scholarly journals Complete Genome Sequences of Plasmid-Bearing Multidrug-Resistant Campylobacter jejuni and Campylobacter coli Strains with Type VI Secretion Systems, Isolated from Retail Turkey and Pork

2017 ◽  
Vol 5 (47) ◽  
Author(s):  
Daya Marasini ◽  
Mohamed K. Fakhr

ABSTRACT We report the complete genome sequences of multidrug-resistant Campylobacter jejuni and Campylobacter coli isolated from retail turkey and pork, respectively. The chromosomes of these two isolates contained type VI secretion system genes. The two isolates also harbored large plasmids with antimicrobial resistance genes possibly contributing to their multidrug resistance.

2016 ◽  
Vol 4 (5) ◽  
Author(s):  
Daya Marasini ◽  
Mohamed K. Fakhr

Genome sequences of Campylobacter jejuni strains OD267 and WP2202, isolated from chicken livers and gizzards, showed the presence of novel 116-kb and 119-kb megaplasmids, respectively. The two megaplasmids carry a type VI secretion system and tetracycline resistance genes. These are the largest sequenced Campylobacter plasmids to date.


2017 ◽  
Vol 5 (49) ◽  
Author(s):  
Daya Marasini ◽  
Mohamed K. Fakhr

ABSTRACT Complete genome sequences of Campylobacter coli strains WA333, YF2105, BG2108, MG1116, and BP3183 and Campylobacter jejuni strain IF1100 isolated from retail chicken liver showed the presence of 1,841,551-, 1,687,232-, 1,695,638-, 1,665,146-, 1,695,360-, and 1,744,171-bp circular chromosomes, respectively. These isolates also contained plasmids ranging in size from 5,209 to 55,122 bp.


2017 ◽  
Vol 5 (47) ◽  
Author(s):  
Daya Marasini ◽  
Mohamed K. Fakhr

ABSTRACT Genome sequences of Campylobacter jejuni FJ3124 and ZP3204 isolated from retail chicken gizzards and Campylobacter jejuni TS1218 isolated from retail chicken showed the presence of 1,694,324-, 1,763,161-, and 1,762,596-bp circular chromosomes, respectively. Campylobacter jejuni ZP3204 and TS1218 harbored large tetracycline resistance plasmids with type IV secretion systems.


2018 ◽  
Vol 6 (14) ◽  
Author(s):  
Natacha Couto ◽  
Monika A. Chlebowicz ◽  
Erwin C. Raangs ◽  
Alex W. Friedrich ◽  
John W. Rossen

ABSTRACT The emergence of nosocomial infections by multidrug-resistant Staphylococcus haemolyticus isolates has been reported in several European countries. Here, we report the first two complete genome sequences of S. haemolyticus sequence type 25 (ST25) isolates 83131A and 83131B. Both isolates were isolated from the same clinical sample and were first identified through shotgun metagenomics.


2020 ◽  
Vol 9 (4) ◽  
Author(s):  
Yiping He ◽  
Sue Reed ◽  
Terence P. Strobaugh

The complete genome sequence of Campylobacter jejuni YH003, isolated from retail chicken, was determined using PacBio and Illumina technologies. The assembled genome is 1,743,985 bp (G+C content of 30.3%). Genome annotation revealed several genes encoding virulence and antibiotic resistance factors, including a type VI secretion system, cytolethal distending toxins, and a multidrug efflux system.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Yiluo Cheng ◽  
Wenting Zhang ◽  
Qin Lu ◽  
Guoyuan Wen ◽  
Qingping Luo ◽  
...  

Campylobacter jejuni is a major foodborne pathogen that plays an important role in spreading drug resistance. We report the draft genome sequences of two multidrug-resistant C. jejuni isolates which contained similar mutations in the CmeR box. This will improve the understanding of C. jejuni antimicrobial resistance and genetic characteristics.


2020 ◽  
Vol 9 (29) ◽  
Author(s):  
Jason Farlow ◽  
Helen R. Freyberger ◽  
Yunxiu He ◽  
Amanda M. Ward ◽  
Wiriya Rutvisuttinunt ◽  
...  

ABSTRACT We report the genome sequences of 10 Pseudomonas aeruginosa phages studied for their potential for formulation of a therapeutic cocktail; they represent the families Myoviridae, Podoviridae, and Siphoviridae. Genome sizes ranged from 43,299 to 88,728 nucleotides, with G+C contents of 52.1% to 62.2%. The genomes contained 68 to 168 coding sequences.


2020 ◽  
Vol 9 (30) ◽  
Author(s):  
V. Bravo ◽  
L. Porte ◽  
T. Weitzel ◽  
C. Varela ◽  
C. J. Blondel ◽  
...  

ABSTRACT Campylobacter jejuni is the leading cause of bacterial foodborne disease worldwide. Here, we report the complete annotated genomes and plasmid sequences of 17 Campylobacter jejuni strains isolated from patients with gastroenteritis in Santiago, Chile.


2019 ◽  
Vol 8 (47) ◽  
Author(s):  
S. Zhao ◽  
C. Li ◽  
S. Mukherjee ◽  
C. H. Hsu ◽  
R. Singh ◽  
...  

Avilamycin-resistant Enterococcus spp. have never been reported in the United States. Here, we report the complete genome sequences of two avilamycin-resistant (Avir) Enterococcus faecium strains isolated from a retail chicken and a cecal sample from a young chicken. Both isolates are multidrug resistant (MDR) and carry emtA on MDR plasmids.


2017 ◽  
Vol 83 (13) ◽  
Author(s):  
Peng Li ◽  
Lisa N. Kinch ◽  
Ann Ray ◽  
Ankur B. Dalia ◽  
Qian Cong ◽  
...  

ABSTRACT Acute hepatopancreatic necrosis disease (AHPND) is a newly emerging shrimp disease that has severely damaged the global shrimp industry. AHPND is caused by toxic strains of Vibrio parahaemolyticus that have acquired a “selfish plasmid” encoding the deadly binary toxins PirAvp/PirBvp. To better understand the repertoire of virulence factors in AHPND-causing V. parahaemolyticus, we conducted a comparative analysis using the genome sequences of the clinical strain RIMD2210633 and of environmental non-AHPND and toxic AHPND isolates of V. parahaemolyticus. Interestingly, we found that all of the AHPND strains, but none of the non-AHPND strains, harbor the antibacterial type VI secretion system 1 (T6SS1), which we previously identified and characterized in the clinical isolate RIMD2210633. This finding suggests that the acquisition of this T6SS might confer to AHPND-causing V. parahaemolyticus a fitness advantage over competing bacteria and facilitate shrimp infection. Additionally, we found highly dynamic effector loci in the T6SS1 of AHPND-causing strains, leading to diverse effector repertoires. Our discovery provides novel insights into AHPND-causing pathogens and reveals a potential target for disease control. IMPORTANCE Acute hepatopancreatic necrosis disease (AHPND) is a serious disease that has caused severe damage and significant financial losses to the global shrimp industry. To better understand and prevent this shrimp disease, it is essential to thoroughly characterize its causative agent, Vibrio parahaemolyticus. Although the plasmid-encoded binary toxins PirAvp/PirBvp have been shown to be the primary cause of AHPND, it remains unknown whether other virulent factors are commonly present in V. parahaemolyticus and might play important roles during shrimp infection. Here, we analyzed the genome sequences of clinical, non-AHPND, and AHPND strains to characterize their repertoires of key virulence determinants. Our studies reveal that an antibacterial type VI secretion system is associated with the AHPND strains and differentiates them from non-AHPND strains, similar to what was seen with the PirA/PirB toxins. We propose that T6SS1 provides a selective advantage during shrimp infections.


Sign in / Sign up

Export Citation Format

Share Document