scholarly journals The Ubiquitin-Modifying Enzyme A20 Terminates C-Type Lectin Receptor Signals and Is a Suppressor of Host Defense against Systemic Fungal Infection

2020 ◽  
Vol 88 (9) ◽  
Author(s):  
Jie Liang ◽  
Junyi J. Zhang ◽  
Hsin-I Huang ◽  
Masashi Kanayama ◽  
Nourhan Youssef ◽  
...  

ABSTRACT C-type lectin receptors (CLRs) play key roles in antifungal defense. CLR-induced NF-κB is central to CLR functions in immunity, and thus, molecules that control the amplitude of CLR-induced NF-κB could profoundly influence host defense against fungal pathogens. However, little is known about the mechanisms that negatively regulate CLR-induced NF-κB, and molecules which act on the CLR family broadly and which directly regulate acute CLR-signaling cascades remain unidentified. Here, we identify the ubiquitin-editing enzyme A20 as a negative regulator of acute NF-κB activation downstream of multiple CLR pathways. Absence of A20 suppression results in exaggerated CLR responses in cells which are A20 deficient and also cells which are A20 haplosufficient, including multiple primary immune cells. Loss of a single allele of A20 results in enhanced defense against systemic Candida albicans infection and prolonged host survival. Thus, A20 restricts CLR-induced innate immune responses in vivo and is a suppressor of host defense against systemic fungal infection.

mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Eun Jung Thak ◽  
Su-Bin Lee ◽  
Shengjie Xu-Vanpala ◽  
Dong-Jik Lee ◽  
Seung-Yeon Chung ◽  
...  

ABSTRACT Cryptococcus neoformans is a human-pathogenic fungal pathogen that causes life-threatening meningoencephalitis in immunocompromised individuals. To investigate the roles of N-glycan core structure in cryptococcal pathogenicity, we constructed mutant strains of C. neoformans with defects in the assembly of lipid-linked N-glycans in the luminal side of the endoplasmic reticulum (ER). Deletion of ALG3 (alg3Δ), which encodes dolichyl-phosphate-mannose (Dol-P-Man)-dependent α-1,3-mannosyltransferase, resulted in the production of truncated neutral N-glycans carrying five mannose residues as a major species. Despite moderate or nondetectable defects in virulence-associated phenotypes in vitro, the alg3Δ mutant was avirulent in a mouse model of systemic cryptococcosis. Notably, the mutant did not show defects in early stages of host cell interaction during infection, including attachment to lung epithelial cells, opsonic/nonopsonic phagocytosis, and manipulation of phagosome acidification. However, the ability to drive macrophage cell death was greatly decreased in this mutant, without loss of cell wall remodeling capacity. Furthermore, deletion of ALG9 and ALG12, encoding Dol-P-Man-dependent α-1,2-mannosyltransferases and α-1,6-mannosyltransferases, generating truncated core N-glycans with six and seven mannose residues, respectively, also displayed remarkably reduced macrophage cell death and in vivo virulence. However, secretion levels of interleukin-1β (IL-1β) were not reduced in the bone marrow-derived dendritic cells obtained from Asc- and Gsdmd-deficient mice infected with the alg3Δ mutant strain, excluding the possibility that pyroptosis is a main host cell death pathway dependent on intact core N-glycans. Our results demonstrated N-glycan structures as a critical feature in modulating death of host cells, which is exploited by as a strategy for host cell escape for dissemination of C. neoformans. IMPORTANCE We previously reported that the outer mannose chains of N-glycans are dispensable for the virulence of C. neoformans, which is in stark contrast to findings for the other human-pathogenic yeast, Candida albicans. Here, we present evidence that an intact core N-glycan structure is required for C. neoformans pathogenicity by systematically analyzing alg3Δ, alg9Δ, and alg12Δ strains that have defects in lipid-linked N-glycan assembly and in in vivo virulence. The alg null mutants producing truncated core N-glycans were defective in inducing host cell death after phagocytosis, which is triggered as a mechanism of pulmonary escape and dissemination of C. neoformans, thus becoming inactive in causing fatal infection. The results clearly demonstrated the critical features of the N-glycan structure in mediating the interaction with host cells during fungal infection. The delineation of the roles of protein glycosylation in fungal pathogenesis not only provides insight into the glycan-based fungal infection mechanism but also will aid in the development of novel antifungal agents.


1983 ◽  
Vol 157 (1) ◽  
pp. 371-376 ◽  
Author(s):  
M Fogel ◽  
P Altevogt ◽  
V Schirrmacher

A plastic adherent variant line (ESb-M) of a highly invasive and metastatic murine T cell lymphoma (ESb) was found to have lost its metastatic potential while still being tumorigenic in normal syngeneic hosts. The variant retained most of its ESb-derived antigenic and biochemical characteristics but differed at binding sites for certain lectins with specificity for terminal N-acetylgalactosamine residues. Whereas such sites were masked by sialic acid on metastatic ESb cells, they became unmasked on the adherent variant line. Metastatic revertants of ESb-M cells did not express the respective lectin receptor sites because these were again masked by sialic acid. It is suggested that the masking of specific lectin receptors sites on the tumor cell surface is of crucial importance for metastatis. If freely exposed, these sites may change adherence characteristics of the cells possibly not only in vitro (to plastic) but also in vivo.


2016 ◽  
Vol 198 (19) ◽  
pp. 2596-2607 ◽  
Author(s):  
John F. Brooks ◽  
Mark J. Mandel

ABSTRACTBacterial colonization of animal epithelial tissue is a dynamic process that relies on precise molecular communication. Colonization ofEuprymna scolopesbobtail squid byVibrio fischeribacteria requires bacterial aggregation in host mucus as the symbiont transitions from a planktonic lifestyle in seawater to a biofilm-associated state in the host. We have identified a gene,binK(biofilm inhibitor kinase; VF_A0360), which encodes an orphan hybrid histidine kinase that negatively regulates theV. fischerisymbiotic biofilm (Syp)in vivoandin vitro. We identifiedbinKmutants as exhibiting a colonization advantage in a global genetic screen, a phenotype that we confirmed in controlled competition experiments. Bacterial biofilm aggregates in the host are larger in strains lacking BinK, whereas overexpression of BinK suppresses biofilm formation and squid colonization. Signaling through BinK is required for temperature modulation of biofilm formation at 28°C. Furthermore, we present evidence that BinK acts upstream of SypG, the σ54-dependent transcriptional regulator of thesypbiofilm locus. The BinK effects are dependent on intact signaling in the RscS-Syp biofilm pathway. Therefore, we propose that BinK antagonizes the signal from RscS and serves as an integral component inV. fischeribiofilm regulation.IMPORTANCEBacterial lifestyle transitions underlie the colonization of animal hosts from environmental reservoirs. Formation of matrix-enclosed, surface-associated aggregates (biofilms) is common in beneficial and pathogenic associations, but investigating the genetic basis of biofilm development in live animal hosts remains a significant challenge. Using the bobtail squid light organ as a model, we analyzed putative colonization factors and identified a histidine kinase that negatively regulates biofilm formation at the host interface. This work reveals a novelin vivobiofilm regulator that influences the transition of bacteria from their planktonic state in seawater to tight aggregates of cells in the host. The study enriches our understanding of biofilm regulation and beneficial colonization by an animal's microbiome.


2013 ◽  
Vol 81 (12) ◽  
pp. 4490-4497 ◽  
Author(s):  
Derek D. Jones ◽  
Maura Jones ◽  
Gregory A. DeIulio ◽  
Rachael Racine ◽  
Katherine C. MacNamara ◽  
...  

ABSTRACTB cell activating factor of the tumor necrosis factor family (BAFF) is an essential survival factor for B cells and has been shown to regulate T cell-independent (TI) IgM production. DuringEhrlichia murisinfection, TI IgM secretion in the spleen was BAFF dependent, and antibody-mediated BAFF neutralization led to an impairment of IgM-mediated host defense. The failure of TI plasmablasts to secrete IgM was not a consequence of alterations in their generation, survival, or early differentiation, since all occurred normally in infected mice following BAFF neutralization. Gene expression characteristic of plasma cell differentiation was also unaffected by BAFF neutralizationin vivo, and except for CD138, plasmablast cell surface marker expression was unaffected. IgM was produced, since it was detected intracellularly, and impaired secretion was not due to a failure to express the IgM secretory exon. Addition of BAFF to plasmablastsin vitrorescued IgM secretion, suggesting that BAFF signaling can directly regulate secretory processes. Our findings indicate that BAFF signaling can modulate TI host defense by acting at a late stage in B cell differentiation, via its regulation of terminal plasmablast differentiation and/or IgM secretion.


2016 ◽  
Vol 85 (3) ◽  
Author(s):  
Jennifer L. Reedy ◽  
Paige E. Negoro ◽  
Marianela Feliu ◽  
Allison K. Lord ◽  
Nida S. Khan ◽  
...  

ABSTRACT Dematiaceous molds are found ubiquitously in the environment and cause a wide spectrum of human disease, including infections associated with high rates of mortality. Despite this, the mechanism of the innate immune response has been less well studied, although it is key in the clearance of fungal pathogens. Here, we focus on Exserohilum rostratum, a dematiaceous mold that caused 753 infections during a multistate outbreak due to injection of contaminated methylprednisolone. We show that macrophages are incapable of phagocytosing Exserohilum. Despite a lack of phagocytosis, macrophage production of tumor necrosis factor alpha is triggered by hyphae but not spores and depends upon Dectin-1, a C-type lectin receptor. Dectin-1 is specifically recruited to the macrophage-hyphal interface but not the macrophage-spore interface due to differences in carbohydrate antigen expression between these two fungal forms. Corticosteroid and antifungal therapy perturb this response, resulting in decreased cytokine production. In vivo soft tissue infection in wild-type mice demonstrated that Exserohilum provokes robust neutrophilic and granulomatous inflammation capable of thwarting fungal growth. However, coadministration of methylprednisolone acetate results in robust hyphal tissue invasion and a significant reduction in immune cell recruitment. Our results suggest that Dectin-1 is crucial for macrophage recognition and the macrophage response to Exserohilum and that corticosteroids potently attenuate the immune response to this pathogen.


2017 ◽  
Vol 200 (1) ◽  
Author(s):  
Gabriele Sass ◽  
Hasan Nazik ◽  
John Penner ◽  
Hemi Shah ◽  
Shajia Rahman Ansari ◽  
...  

ABSTRACT Pseudomonas aeruginosa and Aspergillus fumigatus are common opportunistic bacterial and fungal pathogens, respectively. They often coexist in airways of immunocompromised patients and individuals with cystic fibrosis, where they form biofilms and cause acute and chronic illnesses. Hence, the interactions between them have long been of interest and it is known that P. aeruginosa can inhibit A. fumigatus in vitro. We have approached the definition of the inhibitory P. aeruginosa molecules by studying 24 P. aeruginosa mutants with various virulence genes deleted for the ability to inhibit A. fumigatus biofilms. The ability of P. aeruginosa cells or their extracellular products produced during planktonic or biofilm growth to affect A. fumigatus biofilm metabolism or planktonic A. fumigatus growth was studied in agar and liquid assays using conidia or hyphae. Four mutants, the pvdD pchE, pvdD, lasR rhlR, and lasR mutants, were shown to be defective in various assays. This suggested the P. aeruginosa siderophore pyoverdine as the key inhibitory molecule, although additional quorum sensing-regulated factors likely contribute to the deficiency of the latter two mutants. Studies of pure pyoverdine substantiated these conclusions and included the restoration of inhibition by the pyoverdine deletion mutants. A correlation between the concentration of pyoverdine produced and antifungal activity was also observed in clinical P. aeruginosa isolates derived from lungs of cystic fibrosis patients. The key inhibitory mechanism of pyoverdine was chelation of iron and denial of iron to A. fumigatus. IMPORTANCE Interactions between human pathogens found in the same body locale are of vast interest. These interactions could result in exacerbation or amelioration of diseases. The bacterium Pseudomonas aeruginosa affects the growth of the fungus Aspergillus fumigatus. Both pathogens form biofilms that are resistant to therapeutic drugs and host immunity. P. aeruginosa and A. fumigatus biofilms are found in vivo, e.g., in the lungs of cystic fibrosis patients. Studying 24 P. aeruginosa mutants, we identified pyoverdine as the major anti-A. fumigatus compound produced by P. aeruginosa. Pyoverdine captures iron from the environment, thus depriving A. fumigatus of a nutrient essential for its growth and metabolism. We show how microbes of different kingdoms compete for essential resources. Iron deprivation could be a therapeutic approach to the control of pathogen growth.


2013 ◽  
Vol 58 (1) ◽  
pp. 258-266 ◽  
Author(s):  
Christina Gallo-Ebert ◽  
Melissa Donigan ◽  
Ilana L. Stroke ◽  
Robert N. Swanson ◽  
Melissa T. Manners ◽  
...  

ABSTRACTInfections byCandida albicansand related fungal pathogens pose a serious health problem for immunocompromised patients. Azole drugs, the most common agents used to combat infections, target the sterol biosynthetic pathway. Adaptation to azole therapy develops as drug-stressed cells compensate by upregulating several genes in the pathway, a process mediated in part by the Upc2 transcription factor. We have implemented a cell-based high-throughput screen to identify small-molecule inhibitors of Upc2-dependent induction of sterol gene expression in response to azole drug treatment. The assay is designed to identify not only Upc2 DNA binding inhibitors but also compounds impeding the activation of gene expression by Upc2. An AlphaScreen assay was developed to determine whether the compounds identified interact directly with Upc2 and inhibit DNA binding. Three compounds identified by the cell-based assay inhibited Upc2 protein level andUPC2-LacZgene expression in response to a block in sterol biosynthesis. The compounds were growth inhibitory and attenuated antifungal-induced sterol gene expressionin vivo. They did so by reducing the level of Upc2 protein and Upc2 DNA binding in the presence of drug. The mechanism by which the compounds restrict Upc2 DNA binding is not through a direct interaction, as demonstrated by a lack of DNA binding inhibitory activity using the AlphaScreen assay. Rather, they likely inhibit a novel pathway activating Upc2 in response to a block in sterol biosynthesis. We suggest that the compounds identified represent potential precursors for the synthesis of novel antifungal drugs.


2018 ◽  
Vol 200 (12) ◽  
pp. e00712-17 ◽  
Author(s):  
Manita Guragain ◽  
Jamie Jennings-Gee ◽  
Natalia Cattelan ◽  
Mary Finger ◽  
Matt S. Conover ◽  
...  

ABSTRACTMany of the pathogenic species of the genusBordetellahave an absolute requirement for nicotinic acid (NA) for laboratory growth. These Gram-negative bacteria also harbor a gene cluster homologous to theniccluster ofPseudomonas putidawhich is involved in the aerobic degradation of NA and its transcriptional control. We report here that BpsR, a negative regulator of biofilm formation and Bps polysaccharide production, controls the growth ofBordetella bronchisepticaby repressing the expression ofnicgenes. The severe growth defect of the ΔbpsRstrain in Stainer-Scholte medium was restored by supplementation with NA, which also functioned as an inducer ofnicgenes at low micromolar concentrations that are usually present in animals and humans. Purified BpsR protein bound to thenicpromoter region, and its DNA binding activity was inhibited by 6-hydroxynicotinic acid (6-HNA), the first metabolite of the NA degradative pathway. Reporter assays with the isogenic mutant derivative of the wild-type (WT) strain harboring deletion innicA, which encodes a putative nicotinic acid hydroxylase responsible for conversion of NA to 6-HNA, showed that 6-HNA is the actual inducer of thenicgenes in the bacterial cell. Gene expression profiling further showed that BpsR dually activated and repressed the expression of genes associated with pathogenesis, transcriptional regulation, metabolism, and other cellular processes. We discuss the implications of these findings with respect to the selection of pyridines such as NA and quinolinic acid for optimum bacterial growth depending on the ecological niche.IMPORTANCEBpsR, the previously described regulator of biofilm formation and Bps polysaccharide production, controlsBordetella bronchisepticagrowth by regulating the expression of genes involved in the degradation of nicotinic acid (NA). 6-Hydroxynicotinic acid (6-HNA), the first metabolite of the NA degradation pathway prevented BpsR from binding to DNA and was the actualin vivoinducer. We hypothesize that BpsR enablesBordetellabacteria to efficiently and selectively utilize NA for their survival depending on the environment in which they reside. The results reported herein lay the foundation for future investigations of how BpsR and the alteration of its activity by NA orchestrate the control ofBordetellagrowth, metabolism, biofilm formation, and pathogenesis.


2015 ◽  
Vol 83 (10) ◽  
pp. 3857-3864 ◽  
Author(s):  
Jessica C. Hargarten ◽  
Tyler C. Moore ◽  
Thomas M. Petro ◽  
Kenneth W. Nickerson ◽  
Audrey L. Atkin

The polymorphic commensal fungusCandida albicanscauses life-threatening disease via bloodstream and intra-abdominal infections in immunocompromised and transplant patients. Although host immune evasion is a common strategy used by successful human fungal pathogens,C. albicansprovokes recognition by host immune cells less capable of destroying it. To accomplish this,C. albicanswhite cells secrete a low-molecular-weight chemoattractive stimulant(s) of macrophages, a phagocyte that they are able to survive within and eventually escape from.C. albicansopaque cells do not secrete this chemoattractive stimulant(s). We report here a physiological mechanism that contributes to the differences in the interaction ofC. albicanswhite and opaque cells with macrophages.E,E-Farnesol, which is secreted by white cells only, is a potent stimulator of macrophage chemokinesis, whose activity is enhanced by yeast cell wall components and aromatic alcohols.E,E-farnesol results in up to an 8.5-fold increase in macrophage migrationin vitroand promotes a 3-fold increase in the peritoneal infiltration of macrophagesin vivo. Therefore, modulation of farnesol secretion to stimulate host immune recognition by macrophages may help explain why this commensal is such a successful pathogen.


Sign in / Sign up

Export Citation Format

Share Document