scholarly journals HtrA Is Important for Stress Resistance and Virulence in Haemophilus parasuis

2016 ◽  
Vol 84 (8) ◽  
pp. 2209-2219 ◽  
Author(s):  
Luhua Zhang ◽  
Ying Li ◽  
Yiping Wen ◽  
Gee W. Lau ◽  
Xiaobo Huang ◽  
...  

Haemophilus parasuisis an opportunistic pathogen that causes Glässer's disease in swine, with polyserositis, meningitis, and arthritis. The high-temperature requirement A (HtrA)-like protease, which is involved in protein quality control, has been reported to be a virulence factor in many pathogens. In this study, we showed that HtrA ofH. parasuis(HpHtrA) exhibited both chaperone and protease activities. Finally, nickel import ATP-binding protein (NikE), periplasmic dipeptide transport protein (DppA), and outer membrane protein A (OmpA) were identified as proteolytic substrates for HpHtrA. The protease activity reached its maximum at 40°C in a time-dependent manner. Disruption of thehtrAgene from strain SC1401 affected tolerance to temperature stress and resistance to complement-mediated killing. Furthermore, increased autoagglutination and biofilm formation were detected in thehtrAmutant. In addition, thehtrAmutant was significantly attenuated in virulence in the murine model of infection. Together, these data demonstrate that HpHtrA plays an important role in the virulence ofH. parasuis.

2019 ◽  
Vol 63 (9) ◽  
Author(s):  
Michael R. M. Ranieri ◽  
Derek C. K. Chan ◽  
Luke N. Yaeger ◽  
Madeleine Rudolph ◽  
Sawyer Karabelas-Pittman ◽  
...  

ABSTRACTPseudomonas aeruginosais a biofilm-forming opportunistic pathogen and is intrinsically resistant to many antibiotics. In a high-throughput screen for molecules that modulate biofilm formation, we discovered that the thiopeptide antibiotic thiostrepton (TS), which is considered to be inactive against Gram-negative bacteria, stimulatedP. aeruginosabiofilm formation in a dose-dependent manner. This phenotype is characteristic of exposure to antimicrobial compounds at subinhibitory concentrations, suggesting that TS was active againstP. aeruginosa. Supporting this observation, TS inhibited the growth of a panel of 96 multidrug-resistant (MDR)P. aeruginosaclinical isolates at low-micromolar concentrations. TS also had activity againstAcinetobacter baumanniiclinical isolates. The expression of Tsr, a 23S rRNA-modifying methyltransferase from TS producerStreptomyces azureus, intransconferred TS resistance, confirming that the drug acted via its canonical mode of action, inhibition of ribosome function. The deletion of oligopeptide permease systems used by other peptide antibiotics for uptake failed to confer TS resistance. TS susceptibility was inversely proportional to iron availability, suggesting that TS exploits uptake pathways whose expression is increased under iron starvation. Consistent with this finding, TS activity againstP. aeruginosaandA. baumanniiwas potentiated by the FDA-approved iron chelators deferiprone and deferasirox and by heat-inactivated serum. Screening ofP. aeruginosamutants for TS resistance revealed that it exploits pyoverdine receptors FpvA and FpvB to cross the outer membrane. We show that the biofilm stimulation phenotype can reveal cryptic subinhibitory antibiotic activity, and that TS has activity against select multidrug-resistant Gram-negative pathogens under iron-limited growth conditions, similar to those encountered at sites of infection.


mSphere ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Soyoung Park ◽  
Jozef Dingemans ◽  
Madison Gowett ◽  
Karin Sauer

ABSTRACT In Pseudomonas aeruginosa, the orphan two-component sensor SagS contributes both to transition to biofilm formation and to biofilm cells gaining their heightened tolerance to antimicrobials. However, little is known about the identity of the signals or conditions sensed by SagS to induce the switch to the sessile, drug-tolerant mode of growth. Using a modified Biolog phenotype assay to screen for compounds that modulate attachment in a SagS-dependent manner, we identified glucose-6-phosphate to enhance attachment in a manner dependent on the glucose-6-phosphate concentration and SagS. The stimulatory effect was not limited to the attachment since glucose-6-phosphate likewise enhanced biofilm formation and also enhanced the expression of select biofilm marker genes. Moreover, exposure to glucose-6-phosphate coincided with decreased swarming motility but increased cellular cyclic-di-GMP (c-di-GMP) levels in biofilms. No such response was noted for compounds modulating attachment and biofilm formation in a manner independent of SagS. Modulation of c-di-GMP in response to glucose-6-phosphate was due to the diguanylate cyclase NicD, with NicD also being required for enhanced biofilm formation. The latter was independent of the sensory domain of NicD but dependent on NicD activity, SagS, and the interaction between NicD and SagS. Our findings indicate that glucose-6-phosphate likely mimics a signal or conditions sensed by SagS to activate its motile-sessile switch function. In addition, our findings provide new insight into the interfaces between the ligand-mediated two-component system signaling pathway and c-di-GMP levels. IMPORTANCE Pathogens sense and respond to signals and cues present in their environment, including host-derived small molecules to modulate the expression of their virulence repertoire. Here, we demonstrate that the opportunistic pathogen Pseudomonas aeruginosa responds to glucose-6-phosphate. Since glucose-6-phosphate is primarily made available due to cell lysis, it is likely that glucose-6-phosphate represents a cross-kingdom cell-to-cell signal that enables P. aeruginosa to adapt to the (nutrient-poor) host environment by enhancing biofilm formation, cyclic-di-GMP, and the expression of genes linked to biofilm formation in a concentration- and SagS-dependent manner.


2012 ◽  
Vol 80 (11) ◽  
pp. 3804-3811 ◽  
Author(s):  
Ritwij Kulkarni ◽  
Swati Antala ◽  
Alice Wang ◽  
Fábio E. Amaral ◽  
Ryan Rampersaud ◽  
...  

ABSTRACTThe strong epidemiological association between cigarette smoke (CS) exposure and respiratory tract infections is conventionally attributed to immunosuppressive and irritant effects of CS on human cells. Since pathogenic bacteria such asStaphylococcus aureusare members of the normal microbiota and reside in close proximity to human nasopharyngeal cells, we hypothesized that bioactive components of CS might affect these organisms and potentiate their virulence. UsingStaphylococcus aureusas a model organism, we observed that the presence of CS increased both biofilm formation and host cell adherence. Analysis of putative molecular pathways revealed that CS exposure decreased expression of the quorum-sensingagrsystem, which is involved in biofilm dispersal, and increased transcription of biofilm inducers such assarAandrbf. CS contains bioactive compounds, including free radicals and reactive oxygen species, and we observed transcriptional induction of bacterial oxidoreductases, including superoxide dismutase, following exposure. Moreover, pretreatment of CS with an antioxidant abrogated CS-mediated enhancement of biofilms. Exposure of bacteria to hydrogen peroxide alone increased biofilm formation. These observations are consistent with the hypothesis that CS induces staphylococcal biofilm formation in an oxidant-dependent manner. CS treatment induced transcription offnbA(encoding fibronectin binding protein A), leading to increased binding of CS-treated staphylococci to immobilized fibronectin and increased adherence to human cells. These observations indicate that the bioactive effects of CS may extend to the resident microbiota of the nasopharynx, with implications for the pathogenesis of respiratory infection in CS-exposed humans.


2011 ◽  
Vol 56 (1) ◽  
pp. 148-153 ◽  
Author(s):  
Marisa H. Miceli ◽  
Stella M. Bernardo ◽  
T. S. Neil Ku ◽  
Carla Walraven ◽  
Samuel A. Lee

ABSTRACTInfections and thromboses are the most common complications associated with central venous catheters. Suggested strategies for prevention and management of these complications include the use of heparin-coated catheters, heparin locks, and antimicrobial lock therapy. However, the effects of heparin onCandida albicansbiofilms and planktonic cells have not been previously studied. Therefore, we sought to determine thein vitroeffect of a heparin sodium preparation (HP) on biofilms and planktonic cells ofC. albicans. Because HP contains two preservatives, methyl paraben (MP) and propyl paraben (PP), these compounds and heparin sodium without preservatives (Pure-H) were also tested individually. The metabolic activity of the mature biofilm after treatment was assessed using XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] reduction and microscopy. Pure-H, MP, and PP caused up to 75, 85, and 60% reductions of metabolic activity of the mature preformedC. albicansbiofilms, respectively. Maximal efficacy against the mature biofilm was observed with HP (up to 90%) compared to the individual compounds (P< 0.0001). Pure-H, MP, and PP each inhibitedC. albicansbiofilm formation up to 90%. A complete inhibition of biofilm formation was observed with HP at 5,000 U/ml and higher. When tested against planktonic cells, each compound inhibited growth in a dose-dependent manner. These data indicated that HP, MP, PP, and Pure-H havein vitroantifungal activity againstC. albicansmature biofilms, formation of biofilms, and planktonic cells. Investigation of high-dose heparin-based strategies (e.g., heparin locks) in combination with traditional antifungal agents for the treatment and/or prevention ofC. albicansbiofilms is warranted.


2012 ◽  
Vol 80 (11) ◽  
pp. 3748-3760 ◽  
Author(s):  
Nore Ojogun ◽  
Amandeep Kahlon ◽  
Stephanie A. Ragland ◽  
Matthew J. Troese ◽  
Juliana E. Mastronunzio ◽  
...  

ABSTRACTAnaplasma phagocytophilumis the tick-transmitted obligate intracellular bacterium that causes human granulocytic anaplasmosis (HGA).A. phagocytophilumbinding to sialyl Lewis x (sLex) and other sialylated glycans that decorate P selectin glycoprotein 1 (PSGL-1) and other glycoproteins is critical for infection of mammalian host cells. Here, we demonstrate the importance ofA. phagocytophilumouter membrane protein A (OmpA) APH_0338 in infection of mammalian host cells. OmpA is transcriptionally induced during transmission feeding ofA. phagocytophilum-infected ticks on mice and is upregulated during invasion of HL-60 cells. OmpA is presented on the pathogen's surface. Sera from HGA patients and experimentally infected mice recognize recombinant OmpA. Pretreatment ofA. phagocytophilumorganisms with OmpA antiserum reduces their abilities to infect HL-60 cells. The OmpA N-terminal region is predicted to contain the protein's extracellular domain. GlutathioneS-transferase (GST)-tagged versions of OmpA and OmpA amino acids 19 to 74 (OmpA19-74) but not OmpA75-205bind to, and competitively inhibitA. phagocytophiluminfection of, host cells. Pretreatment of host cells with sialidase or trypsin reduces or nearly eliminates, respectively, GST-OmpA adhesion. Therefore, OmpA interacts with sialylated glycoproteins. This study identifies the firstA. phagocytophilumadhesin-receptor pair and delineates the region of OmpA that is critical for infection.


2018 ◽  
Vol 201 (2) ◽  
Author(s):  
Carly Ching ◽  
Brendan Yang ◽  
Chineme Onwubueke ◽  
David Lazinski ◽  
Andrew Camilli ◽  
...  

ABSTRACTAcinetobacter baumanniiis a Gram-negative opportunistic pathogen that is known to survive harsh environmental conditions and is a leading cause of hospital-acquired infections. Specifically, multicellular communities (known as biofilms) ofA. baumanniican withstand desiccation and survive on hospital surfaces and equipment. Biofilms are bacteria embedded in a self-produced extracellular matrix composed of proteins, sugars, and/or DNA. Bacteria in a biofilm are protected from environmental stresses, including antibiotics, which provides the bacteria with selective advantage for survival. Although some gene products are known to play roles in this developmental process inA. baumannii, mechanisms and signaling remain mostly unknown. Here, we find that Lon protease inA. baumanniiaffects biofilm development and has other important physiological roles, including motility and the cell envelope. Lon proteases are found in all domains of life, participating in regulatory processes and maintaining cellular homeostasis. These data reveal the importance of Lon protease in influencing keyA. baumanniiprocesses to survive stress and to maintain viability.IMPORTANCEAcinetobacter baumanniiis an opportunistic pathogen and is a leading cause of hospital-acquired infections.A. baumanniiis difficult to eradicate and to manage, because this bacterium is known to robustly survive desiccation and to quickly gain antibiotic resistance. We sought to investigate biofilm formation inA. baumannii, since much remains unknown about biofilm formation in this bacterium. Biofilms, which are multicellular communities of bacteria, are surface attached and difficult to eliminate from hospital equipment and implanted devices. Our research identifies multifaceted physiological roles for the conserved bacterial protease Lon inA. baumannii. These roles include biofilm formation, motility, and viability. This work broadly affects and expands understanding of the biology ofA. baumannii, which will permit us to find effective ways to eliminate the bacterium.


2019 ◽  
Vol 201 (6) ◽  
Author(s):  
Wooi Keong Teh ◽  
Shaynoor Dramsi ◽  
Tim Tolker-Nielsen ◽  
Liang Yang ◽  
Michael Givskov

ABSTRACT Cyclic di-AMP is a recently identified second messenger exploited by a number of Gram-positive bacteria to regulate important biological processes. Here, we studied the phenotypic alterations induced by the increased intracellular c-di-AMP levels in Streptococcus gallolyticus, an opportunistic pathogen responsible for septicemia and endocarditis in the elderly. We report that an S. gallolyticus c-di-AMP phosphodiesterase gdpP knockout mutant, which displays a 1.5-fold higher intracellular c-di-AMP levels than the parental strain UCN34, is more sensitive to osmotic stress and is morphologically smaller than the parental strain. Unexpectedly, we found that a higher level of c-di-AMP reduced biofilm formation of S. gallolyticus on abiotic surfaces and reduced adherence and cell aggregation on human intestinal cells. A genome-wide transcriptomic analysis indicated that c-di-AMP regulates many biological processes in S. gallolyticus, including the expression of various ABC transporters and disease-associated genes encoding bacteriocin and Pil3 pilus. Complementation of the gdpP in-frame deletion mutant with a plasmid carrying gdpP in trans from its native promoter restored bacterial morphology, tolerance to osmotic stress, biofilm formation, adherence to intestinal cells, bacteriocin production, and Pil3 pilus expression. Our results indicate that c-di-AMP is a pleiotropic signaling molecule in S. gallolyticus that may be important for S. gallolyticus pathogenesis. IMPORTANCE Streptococcus gallolyticus is an opportunistic pathogen responsible for septicemia and endocarditis in the elderly and is also strongly associated with colorectal cancer. S. gallolyticus can form biofilms, express specific pili to colonize the host tissues, and produce a specific bacteriocin allowing killing of commensal bacteria in the murine colon. Nevertheless, how the expression of these colonization factors is regulated remains largely unknown. Here, we show that c-di-AMP plays pleiotropic roles in S. gallolyticus, controlling the tolerance to osmotic stress, cell size, biofilm formation on abiotic surfaces, adherence and cell aggregation on human intestinal cells, expression of Pil3 pilus, and production of bacteriocin. This study indicates that c-di-AMP may constitute a key regulatory molecule for S. gallolyticus host colonization and pathogenesis.


2008 ◽  
Vol 191 (3) ◽  
pp. 832-843 ◽  
Author(s):  
Nekane Merino ◽  
Alejandro Toledo-Arana ◽  
Marta Vergara-Irigaray ◽  
Jaione Valle ◽  
Cristina Solano ◽  
...  

ABSTRACT The capacity of Staphylococcus aureus to form biofilms on host tissues and implanted medical devices is one of the major virulence traits underlying persistent and chronic infections. The matrix in which S. aureus cells are encased in a biofilm often consists of the polysaccharide intercellular adhesin (PIA) or poly-N-acetyl glucosamine (PNAG). However, surface proteins capable of promoting biofilm development in the absence of PIA/PNAG exopolysaccharide have been described. Here, we used two-dimensional nano-liquid chromatography and mass spectrometry to investigate the composition of a proteinaceous biofilm matrix and identified protein A (spa) as an essential component of the biofilm; protein A induced bacterial aggregation in liquid medium and biofilm formation under standing and flow conditions. Exogenous addition of synthetic protein A or supernatants containing secreted protein A to growth media induced biofilm development, indicating that protein A can promote biofilm development without being covalently anchored to the cell wall. Protein A-mediated biofilm formation was completely inhibited in a dose-dependent manner by addition of serum, purified immunoglobulin G, or anti-protein A-specific antibodies. A murine model of subcutaneous catheter infection unveiled a significant role for protein A in the development of biofilm-associated infections, as the amount of protein A-deficient bacteria recovered from the catheter was significantly lower than that of wild-type bacteria when both strains were used to coinfect the implanted medical device. Our results suggest a novel role for protein A complementary to its known capacity to interact with multiple immunologically important eukaryotic receptors.


2015 ◽  
Vol 60 (2) ◽  
pp. 818-826 ◽  
Author(s):  
Eun-Young Jang ◽  
Minjung Kim ◽  
Mi Hee Noh ◽  
Ji-Hoi Moon ◽  
Jin-Yong Lee

ABSTRACTPolyphosphate (polyP) has gained a wide interest in the food industry due to its potential as a decontaminating agent. In this study, we examined the effect of sodium tripolyphosphate (polyP3; Na5P3O10) against planktonic and biofilm cells ofPrevotella intermedia, a major oral pathogen. The MIC of polyP3 againstP. intermediaATCC 49046 determined by agar dilution method was 0.075%, while 0.05% polyP3 was bactericidal againstP. intermediain time-kill analysis performed using liquid medium. A crystal violet binding assay for the assessment of biofilm formation byP. intermediashowed that sub-MICs of polyP3 significantly decreased biofilm formation. Under the scanning electron microscope, decreased numbers ofP. intermediacells forming the biofilms were observed when the bacterial cells were incubated with 0.025% or higher concentrations of polyP3. Assessment of biofilm viability with LIVE/DEAD staining and viable cell count methods showed that 0.05% or higher concentrations of polyP3 significantly decreased the viability of the preformed biofilms in a concentration-dependent manner. The zone sizes of alpha-hemolysis formed on horse blood agar produced byP. intermediawere decreased in the presence of polyP3. The expression of the genes encoding hemolysins and the genes of the hemin uptake (hmu) locus was downregulated by polyP3. Collectively, our results show that polyP is an effective antimicrobial agent againstP. intermediain biofilms as well as planktonic phase, interfering with the process of hemin acquisition by the bacterium.


2015 ◽  
Vol 197 (13) ◽  
pp. 2104-2111 ◽  
Author(s):  
Izumi Mashima ◽  
Futoshi Nakazawa

Dental plaque is a multispecies oral biofilm, the development of which is initiated by adherence of the pioneerStreptococcusspp. OralVeillonellaspp., includingV. atypica,V. denticariosi,V. dispar,V. parvula,V. rogosae, andV. tobetsuensis, are known as early colonizers in oral biofilm formation. These species have been reported to coaggregate withStreptococcusspp. in a metabolic cooperation-dependent manner to form biofilms in human oral cavities, especially in the early stages of biofilm formation. However, in our previous study,Streptococcus gordoniishowed biofilm formation to the greatest extent in the presence ofV. tobetsuensis, without coaggregation between species. These results suggest thatV. tobetsuensisproduces signaling molecules that promote the proliferation ofS. gordoniiin biofilm formation. It is well known in many bacterial species that the quorum-sensing (QS) system regulates diverse functions such as biofilm formation. However, little is known about the QS system with autoinducers (AIs) with respect toVeillonella and Streptococcusspp. Recently, autoinducer 1 (AI-1) and AI-2 were detected and identified in the culture supernatants ofV. tobetsuensisas strong signaling molecules in biofilm formation withS. gordonii. In particular, the supernatant fromV. tobetsuensisshowed the highest AI-2 activity among 6 oralVeillonellaspecies, indicating that AIs, mainly AI-2, produced byV. tobetsuensismay be important factors and may facilitate biofilm formation ofS. gordonii. Clarifying the mechanism that underlies the QS system betweenS. gordoniiandV. tobetsuensismay lead to the development of novel methods for the prevention of oral infectious diseases caused by oral biofilms.


Sign in / Sign up

Export Citation Format

Share Document