scholarly journals Catalase Activity is Critical for Proteus mirabilis Biofilm Development, EPS Composition, and Dissemination During Catheter-Associated Urinary Tract Infection

2021 ◽  
Author(s):  
Ashley N. White ◽  
Brian S. Learman ◽  
Aimee L. Brauer ◽  
Chelsie E. Armbruster

Proteus mirabilis is a leading uropathogen of catheter-associated urinary tract infections (CAUTIs), which are among the most common healthcare-associated infections worldwide. A key factor that contributes to P. mirabilis pathogenesis and persistence during CAUTI is the formation of catheter biofilms, which provide increased resistance to antibiotic treatment and host defense mechanisms. Another factor that is important for bacterial persistence during CAUTI is the ability to resist reactive oxygen species (ROS), such as through the action of the catalase enzyme. Potent catalase activity is one of the defining biochemical characteristics of P. mirabilis , and the single catalase gene ( katA ) encoded in strain HI4320 was recently identified as a candidate fitness factor for UTI, CAUTI, and bacteremia. Here we show that disruption of katA results in increased ROS levels, increased sensitivity to peroxide, and decreased biofilm biomass. The biomass defect was due to a decrease in extracellular polymeric substances (EPS) production by the ΔkatA mutant, and specifically due to reduced carbohydrate content. Importantly, the biofilm defect resulted in decreased antibiotic resistance in vitro and a colonization defect during experimental CAUTI. The ΔkatA mutant also exhibited decreased fitness in a bacteremia model, supporting a dual role for catalase in P. mirabilis biofilm development and immune evasion.

2021 ◽  
Author(s):  
Ashley N. White ◽  
Brian S. Learman ◽  
Aimee L. Brauer ◽  
Chelsie E. Armbruster

AbstractProteus mirabilis is a leading uropathogen of catheter-associated urinary tract infections (CAUTIs), which are among the most common healthcare-associated infections worldwide. A key factor that contributes to P. mirabilis pathogenesis and persistence during CAUTI is the formation of catheter biofilms, which provide increased resistance to antibiotic treatment and host defense mechanisms. Another factor that is important for bacterial persistence during CAUTI is the ability to resist reactive oxygen species (ROS), such as through the action of the catalase enzyme. Potent catalase activity is one of the defining biochemical characteristics of P. mirabilis, and its single catalase gene (katA) was recently identified as a candidate fitness factor for UTI, CAUTI, and bacteremia. Here we show that disruption of katA results in increased ROS levels, increased sensitivity to peroxide, and decreased biofilm biomass. The biomass defect was due to a decrease in extracellular polymeric substances (EPS) production by the ΔkatA mutant, and specifically due to reduced carbohydrate content. Importantly, the biofilm defect resulted in decreased antibiotic resistance in vitro and a colonization defect during experimental CAUTI. The ΔkatA mutant also exhibited decreased fitness in a bacteremia model, supporting a dual role for catalase in P. mirabilis biofilm development and immune evasion.


1997 ◽  
Vol 43 (8) ◽  
pp. 709-717 ◽  
Author(s):  
Douglas L. Tolson ◽  
Blair A. Harrison ◽  
Roger K. Latta ◽  
Kok K. Lee ◽  
Eleonora Altman

Proteus mirabilis is a common causative agent of human urinary tract infections, especially in catheterized patients and in those patients with structural abnormalities of the urinary tract. In addition to the production of hemolysin and urease, fimbriae-mediated adherence to uroepithelial cells and kidney epithelium may be essential for virulence of P. mirabilis. A single P. mirabilis strain is capable of expressing several morphologically distinct fimbrial species, which can each be favoured by specific in vitro growth conditions. The fimbrial species reported to date include mannose-resistant/Proteus-like fimbriae, ambient temperature fimbriae, P. mirabilis fimbriae, and nonagglutinating fimbriae (NAF). Here, using intact bacteria or purified NAF as immunogens, we have generated the first reported NAF-specific monoclonal antibodies (mAbs). Bacteria expressing NAF as their only fimbrial species adhered strongly to a number of cell lines in vitro, including uroepithelial cell lines. Binding of P. mirabilis was markedly reduced following preincubation with NAF-specific mAbs and Fab fragments. The presence of NAF with highly conserved N-terminal sequences on all P. mirabilis strains so far examined, combined with the ability of both anti-NAF mAbs and purified NAF molecules to inhibit P. mirabilis adherence in vitro, suggests that NAF may contribute to the pathogenesis of P. mirabilis.Key words: fimbriae, adherence, monoclonal antibodies, Proteus mirabilis, receptors.


2008 ◽  
Vol 57 (9) ◽  
pp. 1068-1078 ◽  
Author(s):  
Stephanie D. Himpsl ◽  
C. Virginia Lockatell ◽  
J. Richard Hebel ◽  
David E. Johnson ◽  
Harry L. T. Mobley

The Gram-negative bacterium Proteus mirabilis causes urinary tract infections (UTIs) in individuals with long-term indwelling catheters or those with functional or structural abnormalities of the urinary tract. Known virulence factors include urease, haemolysin, fimbriae, flagella, DsbA, a phosphate transporter and genes involved in cell-wall synthesis and metabolism, many of which have been identified using the technique of signature-tagged mutagenesis (STM). To identify additional virulence determinants and to increase the theoretical coverage of the genome, this study generated and assessed 1880 P. mirabilis strain HI4320 mutants using this method. Mutants with disruptions in genes vital for colonization of the CBA mouse model of ascending UTI were identified after performing primary and secondary in vivo screens in approximately 315 CBA mice, primary and secondary in vitro screens in both Luria broth and minimal A medium to eliminate mutants with minor growth deficiencies, and co-challenge competition experiments in approximately 500 CBA mice. After completion of in vivo screening, a total of 217 transposon mutants were attenuated in the CBA mouse model of ascending UTI. Following in vitro screening, this number was reduced to 196 transposon mutants with a probable role in virulence. Co-challenge competition experiments confirmed significant attenuation for 37 of the 93 transposon mutants tested, being outcompeted by wild-type HI4320. Following sequence analysis of the 37 mutants, transposon insertions were identified in genes including the peptidyl-prolyl isomerases surA and ppiA, glycosyltransferase cpsF, biopolymer transport protein exbD, transcriptional regulator nhaR, one putative fimbrial protein, flagellar M-ring protein fliF and hook protein flgE, and multiple metabolic genes.


2010 ◽  
Vol 4 (12) ◽  
pp. 814-821 ◽  
Author(s):  
Vanessa Sosa ◽  
Pablo Zunino

Introduction: Proteus mirabilis is an important cause of complicated urinary tract infections (UTI). Like many other microorganisms, P. mirabilis has acquired resistance to many antibiotics. Due to the serious effects associated with uropathogenic P. mirabilis and the problems related to the use of antibiotics, alternative strategies for its control must be developed. Previously, we studied the effect of Ibicella lutea extract, a South American indigenous plant, on in vitro uropathogenicity of P. mirabilis. We observed that I. lutea extract had an effect on various attributes associated with P. mirabilis urovirulence. The objective of this study was to assess I. lutea extract against UTI by P. mirabilis. Methodology: This study was based on the effect of I. lutea extract to prevent or treat P. mirabilis experimental UTI in mice and the influence of this administration on the normal intestinal flora. Also, we studied the toxicity, mutagenicity, and antimutagenicity of the extract. Results: In this study, while I. lutea administration showed an effect in the prevention and treatment of UTI in the mouse, the intestinal microflora did not change. The I. lutea extract was neither toxic nor mutagenic although the extract showed antimutagenic properties. Conclusion: These findings suggest that the administration of I. lutea extract could represent an interesting new strategy to control P. mirabilis UTI.


2019 ◽  
Vol 14 (12) ◽  
pp. 1023-1034 ◽  
Author(s):  
José JC Sidrim ◽  
Bruno R Amando ◽  
Francisco IF Gomes ◽  
Marilia SMG do Amaral ◽  
Paulo CP de Sousa ◽  
...  

Aim: This study proposes the impregnation of Foley catheters with chlorpromazine (CPZ) to control biofilm formation by Escherichia coli, Proteus mirabilis and Klebsiella pneumoniae. Materials & methods: The minimum inhibitory concentrations (MICs) for CPZ and the effect of CPZ on biofilm formation were assessed. Afterward, biofilm formation and the effect of ciprofloxacin and meropenem (at MIC) on mature biofilms grown on CPZ-impregnated catheters were evaluated. Results: CPZ MIC range was 39.06–625 mg/l. CPZ significantly reduced (p < 0.05) biofilm formation in vitro and on impregnated catheters. In addition, CPZ-impregnation potentiated the antibiofilm activity of ciprofloxacin and meropenem. Conclusion: These findings bring perspectives for the use of CPZ as an adjuvant for preventing and treating catheter-associated urinary tract infections.


2007 ◽  
Vol 56 (12) ◽  
pp. 1600-1607 ◽  
Author(s):  
Analía Lima ◽  
Pablo Zunino ◽  
Bruno D'Alessandro ◽  
Claudia Piccini

Proteus mirabilis, a common cause of urinary tract infections, expresses iron-regulated outer-membrane proteins (OMPs) in response to iron restriction. It has been suggested that a 64 kDa OMP is involved in haemoprotein uptake and that this might have a role in pathogenesis. In order to confirm this hypothesis, this study generated a P. mirabilis mutant strain (P7) that did not express the 64 kDa OMP, by insertion of the TnphoA transposon. The nucleotide sequence of the interrupted gene revealed that it corresponded to a haemin receptor precursor. Moreover, in vitro growth assays showed that the mutant was unable to grow using haemoglobin and haemin as unique iron sources. The authors also carried out in vivo growth and infectivity assays and demonstrated that P7 was not able to survive in an in vivo model and was less efficient than wild-type strain Pr 6515 in colonizing the urinary tract. These results confirmed that the P. mirabilis 64 kDa iron-regulated OMP is a haem receptor that has an important role for survival and multiplication of these bacteria in the mammalian host and in the development of urinary tract infection.


2014 ◽  
Vol 82 (4) ◽  
pp. 1616-1626 ◽  
Author(s):  
N. Holling ◽  
D. Lednor ◽  
S. Tsang ◽  
A. Bissell ◽  
L. Campbell ◽  
...  

ABSTRACTProteus mirabilisforms extensive crystalline biofilms on urethral catheters that occlude urine flow and frequently complicate the management of long-term-catheterized patients. Here, using random transposon mutagenesis in conjunction within vitromodels of the catheterized urinary tract, we elucidate the mechanisms underpinning the formation of crystalline biofilms byP. mirabilis. Mutants identified as defective in blockage of urethral catheters had disruptions in genes involved in nitrogen metabolism and efflux systems but were unaffected in general growth, survival in bladder model systems, or the ability to elevate urinary pH. Imaging of biofilms directly on catheter surfaces, along with quantification of levels of encrustation and biomass, confirmed that the mutants were attenuated specifically in the ability to form crystalline biofilms compared with that of the wild type. However, the biofilm-deficient phenotype of these mutants was not due to deficiencies in attachment to catheter biomaterials, and defects in later stages of biofilm development were indicated. For one blocking-deficient mutant, the disrupted gene (encoding a putative multidrug efflux pump) was also found to be associated with susceptibility to fosfomycin, and loss of this system or general inhibition of efflux pumps increased sensitivity to this antibiotic. Furthermore, homologues of this system were found to be widely distributed among other common pathogens of the catheterized urinary tract. Overall, our findings provide fundamental new insight into crystalline biofilm formation byP. mirabilis, including the link between biofilm formation and antibiotic resistance in this organism, and indicate a potential role for efflux pump inhibitors in the treatment or prevention ofP. mirabiliscrystalline biofilms.


Microbiology ◽  
2006 ◽  
Vol 152 (7) ◽  
pp. 2149-2157 ◽  
Author(s):  
Vanessa Sosa ◽  
Geraldine Schlapp ◽  
Pablo Zunino

Proteus mirabilis has been described as an aetiological agent in a wide range of infections, playing an important role in urinary tract infections (UTIs). In this study, a collection of P. mirabilis isolates obtained from clinical and non-clinical sources was analysed in order to determine a possible correlation between origin, virulence factors and in vivo infectivity. Isolates were characterized in vitro, assessing several virulence properties that had been previously associated with P. mirabilis uropathogenicity. Swarming motility, urease production, growth in urine, outer-membrane protein patterns, ability to grow in the presence of different iron sources, haemolysin and haemagglutinin production, and the presence and expression of diverse fimbrial genes, were analysed. In order to evaluate the infectivity of the different isolates, the experimental ascending UTI model in mice was used. Additionally, the Dienes test and the enterobacterial repetitive intergenic consensus (ERIC)-PCR assay were performed to assess the genetic diversity of the isolates. The results of the present study did not show any correlation between distribution of the diverse potential urovirulence factors and isolate source. No significant correlation was observed between infectivity and the origin of the isolates, since they all similarly colonized the urinary tract of the challenged mice. Finally, all isolates showed unique ERIC-PCR patterns, indicating that the isolates were genetically diverse. The results obtained in this study suggest that the source of P. mirabilis strains cannot be correlated with pathogenic attributes, and that the distribution of virulence factors between isolates of different origins may correspond to the opportunistic nature of the organism.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Scarlet Milo ◽  
Rachel A. Heylen ◽  
John Glancy ◽  
George T. Williams ◽  
Bethany L. Patenall ◽  
...  

AbstractInfection and blockage of indwelling urinary catheters is significant owing to its high incidence rate and severe medical consequences. Bacterial enzymes are employed as targets for small molecular intervention in human bacterial infections. Urease is a metalloenzyme known to play a crucial role in the pathogenesis and virulence of catheter-associated Proteus mirabilis infection. Targeting urease as a therapeutic candidate facilitates the disarming of bacterial virulence without affecting bacterial fitness, thereby limiting the selective pressure placed on the invading population and lowering the rate at which it will acquire resistance. We describe the design, synthesis, and in vitro evaluation of the small molecular enzyme inhibitor 2-mercaptoacetamide (2-MA), which can prevent encrustation and blockage of urinary catheters in a physiologically representative in vitro model of the catheterized urinary tract. 2-MA is a structural analogue of urea, showing promising competitive activity against urease. In silico docking experiments demonstrated 2-MA’s competitive inhibition, whilst further quantum level modelling suggests two possible binding mechanisms.


1998 ◽  
Vol 44 (9) ◽  
pp. 896-904 ◽  
Author(s):  
R K Latta ◽  
M J Schur ◽  
D L Tolson ◽  
E Altman

Proteus mirabilis is a common cause of upper urinary tract infections. Fimbriae-mediated adherence of this organism to urinary tract epithelium and invasion of host cells are factors thought to be important in its pathogenesis. We have assessed the effect of growth in serum, blood, and urine on the ability of P. mirabilis 7570 to adhere to and invade in vitro the cell line EJ/28, derived from a human urinary tract tumour, and to express nonagglutinating fimbriae (NAF). Proteus mirabilis was capable of adhering to EJ/28 cells to varying degrees depending upon the growth conditions used. It was invasive under all conditions, except when grown in urine, and was found to be particularly so when serum or blood was present in the media. Expression of NAF occurred under all growth conditions examined and was limited only by a decrease in temperature.Key words: adhesion, invasion, nonagglutinating fimbriae, Proteus mirabilis.


Sign in / Sign up

Export Citation Format

Share Document