scholarly journals Diffusible Signal Factors Act through AraC-Type Transcriptional Regulators as Chemical Cues To Repress Virulence of Enteric Pathogens

2020 ◽  
Vol 88 (10) ◽  
Author(s):  
Erick Maosa Bosire ◽  
Colleen R. Eade ◽  
Carl J. Schiltz ◽  
Amanda J. Reid ◽  
Jerry Troutman ◽  
...  

ABSTRACT Successful colonization by enteric pathogens is contingent upon effective interactions with the host and the resident microbiota. These pathogens thus respond to and integrate myriad signals to control virulence. Long-chain fatty acids repress the virulence of the important enteric pathogens Salmonella enterica and Vibrio cholerae by repressing AraC-type transcriptional regulators in pathogenicity islands. While several fatty acids are known to be repressive, we show here that cis-2-unsaturated fatty acids, a rare chemical class used as diffusible signal factors (DSFs), are highly potent inhibitors of virulence functions. We found that DSFs repressed virulence gene expression of enteric pathogens by interacting with transcriptional regulators of the AraC family. In Salmonella enterica serovar Typhimurium, DSFs repress the activity of HilD, an AraC-type activator essential to the induction of epithelial cell invasion, by both preventing its interaction with target DNA and inducing its rapid degradation by Lon protease. cis-2-Hexadecenoic acid (c2-HDA), a DSF produced by Xylella fastidiosa, was the most potent among those tested, repressing the HilD-dependent transcriptional regulator hilA and the type III secretion effector sopB >200- and 68-fold, respectively. Further, c2-HDA attenuated the transcription of the ToxT-dependent cholera toxin synthesis genes of V. cholerae. c2-HDA significantly repressed invasion gene expression by Salmonella in the murine colitis model, indicating that the HilD-dependent signaling pathway functions within the complex milieu of the animal intestine. These data argue that enteric pathogens respond to DSFs as interspecies signals to identify appropriate niches in the gut for virulence activation, which could be exploited to control the virulence of enteric pathogens.

mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Aman Kumar ◽  
Vanessa Sperandio

ABSTRACTMicrobial establishment within the gastrointestinal (GI) tract requires surveillance of the gut biogeography. The gut microbiota coordinates behaviors by sensing host- or microbiota-derived signals. Here we show for the first time that microbiota-derived indole is highly prevalent in the lumen compared to the intestinal tissue. This difference in indole concentration plays a key role in modulating virulence gene expression of the enteric pathogens enterohemorrhagicEscherichia coli(EHEC) andCitrobacter rodentium. Indole decreases expression of genes within the locus of enterocyte effacement (LEE) pathogenicity island, which is essential for these pathogens to form attaching and effacing (AE) lesions on enterocytes. We synthetically altered the concentration of indole in the GI tracts of mice by employing mice treated with antibiotics to deplete the microbiota and reconstituted with indole-producing commensalBacteroides thetaiotaomicron(B. theta) or aB. thetaΔtnaAmutant (does not produce indole) or by engineering an indole-producingC. rodentiumstrain. This allowed us to assess the role of self-produced versus microbiota-produced indole, and the results show that decreased indole concentrations promote bacterial pathogenesis, while increased levels of indole decrease bacterial virulence gene expression. Moreover, we identified the bacterial membrane-bound histidine sensor kinase (HK) CpxA as an indole sensor. Enteric pathogens sense a gradient of indole concentrations in the gut to probe different niches and successfully establish an infection.IMPORTANCEPathogens sense and respond to several small molecules within the GI tract to modulate expression of their virulence repertoire. Indole is a signaling molecule produced by the gut microbiota. Here we show that indole concentrations are higher in the lumen, where the microbiota is present, than in the intestinal tissue. The enteric pathogens EHEC andC. rodentiumsense indole to downregulate expression of their virulence genes, as a read-out of the luminal compartment. We also identified the bacterial membrane-bound HK CpxA as an indole sensor. This regulation ensures that EHEC andC. rodentiumexpress their virulence genes only at the epithelial lining, which is the niche they colonize.


mBio ◽  
2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Richard C. Laughlin ◽  
Leigh A. Knodler ◽  
Roula Barhoumi ◽  
H. Ross Payne ◽  
Jing Wu ◽  
...  

ABSTRACTTo establish a replicative niche during its infectious cycle between the intestinal lumen and tissue, the enteric pathogenSalmonella entericaserovar Typhimurium requires numerous virulence genes, including genes for two type III secretion systems (T3SS) and their cognate effectors. To better understand the host-pathogen relationship, including early infection dynamics and induction kinetics of the bacterial virulence program in the context of a natural host, we monitored the subcellular localization and temporal expression of T3SS-1 and T3SS-2 using fluorescent single-cell reporters in a bovine, ligated ileal loop model of infection. We observed that the majority of bacteria at 2 h postinfection are flagellated, express T3SS-1 but not T3SS-2, and are associated with the epithelium or with extruding enterocytes. In epithelial cells,S. Typhimurium cells were surrounded by intact vacuolar membranes or present within membrane-compromised vacuoles that typically contained numerous vesicular structures. By 8 h postinfection, T3SS-2-expressing bacteria were detected in the lamina propria and in the underlying mucosa, while T3SS-1-expressing bacteria were in the lumen. Our work identifies for the first time the temporal and spatial regulation of T3SS-1 and -2 expression during an enteric infection in a natural host and provides further support for the concept of cytosolicS. Typhimurium in extruding epithelium as a mechanism for reseeding the lumen.IMPORTANCEThe pathogenic bacteriumSalmonella entericaserovar Typhimurium invades and persists within host cells using distinct sets of virulence genes. Genes fromSalmonellapathogenicity island 1 (SPI-1) are used to initiate contact and facilitate uptake into nonphagocytic host cells, while genes within SPI-2 allow the pathogen to colonize host cells. While many studies have identified bacterial virulence determinants in animal models of infection, very few have focused on virulence gene expression at the single-cell level during anin vivoinfection. To better understand when and where bacterial virulence factors are expressed during an acute enteric infection of a natural host, we infected bovine jejunal-ileal loops withS. Typhimurium cells harboring fluorescent transcriptional reporters for SPI-1 and -2 (PinvFand PssaG, respectively). After a prescribed time of infection, tissue and luminal fluid were collected and analyzed by microscopy. During early infection (≤2 h), bacteria within both intact and compromised membrane-bound vacuoles were observed within the epithelium, with the majority expressing SPI-1. As the infection progressed,S. Typhimurium displayed differential expression of the SPI-1 and SPI-2 regulons, with the majority of tissue-associated bacteria expressing SPI-2 and the majority of lumen-associated bacteria expressing SPI-1. This underscores the finding thatSalmonellavirulence gene expression changes as the pathogen transitions from one anatomical location to the next.


2018 ◽  
Vol 200 (8) ◽  
Author(s):  
Kevin D. Mlynek ◽  
William E. Sause ◽  
Derek E. Moormeier ◽  
Marat R. Sadykov ◽  
Kurt R. Hill ◽  
...  

ABSTRACTStaphylococcus aureussubverts innate defenses during infection in part by killing host immune cells to exacerbate disease. This human pathogen intercepts host cues and activates a transcriptional response via theS. aureusexoprotein expression (SaeR/SaeS [SaeR/S]) two-component system to secrete virulence factors critical for pathogenesis. We recently showed that the transcriptional repressor CodY adjusts nuclease (nuc) gene expression via SaeR/S, but the mechanism remained unknown. Here, we identified two CodY binding motifs upstream of thesaeP1 promoter, which suggested direct regulation by this global regulator. We show that CodY shares a binding site with the positive activator SaeR and that alleviating direct CodY repression at this site is sufficient to abrogate stochastic expression, suggesting that CodY repressessaeexpression by blocking SaeR binding. Epistasis experiments support a model that CodY also controlssaeindirectly through Agr and Rot-mediated repression of thesaeP1 promoter. We also demonstrate that CodY repression ofsaerestrains production of secreted cytotoxins that kill human neutrophils. We conclude that CodY plays a previously unrecognized role in controlling virulence gene expression via SaeR/S and suggest a mechanism by which CodY acts as a master regulator of pathogenesis by tying nutrient availability to virulence gene expression.IMPORTANCEBacterial mechanisms that mediate the switch from a commensal to pathogenic lifestyle are among the biggest unanswered questions in infectious disease research. Since the expression of most virulence genes is often correlated with nutrient depletion, this implies that virulence is a response to the lack of nourishment in host tissues and that pathogens likeS. aureusproduce virulence factors in order to gain access to nutrients in the host. Here, we show that specific nutrient depletion signals appear to be funneled to the SaeR/S system through the global regulator CodY. Our findings reveal a strategy by whichS. aureusdelays the production of immune evasion and immune-cell-killing proteins until key nutrients are depleted.


mSystems ◽  
2017 ◽  
Vol 2 (4) ◽  
Author(s):  
Amy Platenkamp ◽  
Jay L. Mellies

ABSTRACT Archetypal pathogenic bacterial strains are often used to elucidate regulatory networks of an entire pathovar, which encompasses multiple lineages and phylogroups. With enteropathogenic Escherichia coli (EPEC) as a model system, Hazen and colleagues (mSystems 6:e00024-17, 2017, https://doi.org/10.1128/mSystems.00024-17 ) used 9 isolates representing 8 lineages and 3 phylogroups to find that isolates with similar genomic sequences exhibit similarities in global transcriptomes under conditions of growth in medium that induces virulence gene expression, and they found variation among individual isolates. Archetypal pathogenic bacterial strains are often used to elucidate regulatory networks of an entire pathovar, which encompasses multiple lineages and phylogroups. With enteropathogenic Escherichia coli (EPEC) as a model system, Hazen and colleagues (mSystems 6:e00024-17, 2017, https://doi.org/10.1128/mSystems.00024-17 ) used 9 isolates representing 8 lineages and 3 phylogroups to find that isolates with similar genomic sequences exhibit similarities in global transcriptomes under conditions of growth in medium that induces virulence gene expression. They also found variation among individual isolates. Their work illustrates the importance of moving beyond observing regulatory phenomena of a limited number of regulons in a few archetypal strains, with the possibility of correlating clinical symptoms to key transcriptional pathways across lineages and phylogroups.


2017 ◽  
Vol 199 (18) ◽  
Author(s):  
Nicola Horstmann ◽  
Pranoti Sahasrabhojane ◽  
Hui Yao ◽  
Xiaoping Su ◽  
Samuel A. Shelburne

ABSTRACT Control of the virulence regulator/sensor kinase (CovRS) two-component system (TCS) serves as a model for investigating the impact of signaling pathways on the pathogenesis of Gram-positive bacteria. However, the molecular mechanisms by which CovR, an OmpR/PhoB family response regulator, controls virulence gene expression are poorly defined, partly due to the labile nature of its aspartate phosphorylation site. To better understand the regulatory effect of phosphorylated CovR, we generated the phosphorylation site mutant strain 10870-CovR-D53E, which we predicted to have a constitutive CovR phosphorylation phenotype. Interestingly, this strain showed CovR activity only for a subset of the CovR regulon, which allowed for classification of CovR-influenced genes into D53E-regulated and D53E-nonregulated groups. Inspection of the promoter sequences of genes belonging to each group revealed distinct promoter architectures with respect to the location and number of putative CovR-binding sites. Electrophoretic mobility shift analysis demonstrated that recombinant CovR-D53E protein retains its ability to bind promoter DNA from both CovR-D53E-regulated and -nonregulated groups, implying that factors other than mere DNA binding are crucial for gene regulation. In fact, we found that CovR-D53E is incapable of dimerization, a process thought to be critical to OmpR/PhoB family regulator function. Thus, our global analysis of CovR-D53E indicates dimerization-dependent and dimerization-independent modes of CovR-mediated repression, thereby establishing distinct mechanisms by which this critical regulator coordinates virulence gene expression. IMPORTANCE Streptococcus pyogenes causes a wide variety of diseases, ranging from superficial skin and throat infections to life-threatening invasive infections. To establish these various disease manifestations, Streptococcus pyogenes requires tightly coordinated production of its virulence factor repertoire. Here, the response regulator CovR plays a crucial role. As an OmpR/PhoB family member, CovR is activated by phosphorylation on a conserved aspartate residue, leading to protein dimerization and subsequent binding to operator sites. Our transcriptome analysis using the monomeric phosphorylation mimic mutant CovR-D53E broadens this general notion by revealing dimerization-independent repression of a subset of CovR-regulated genes. Combined with promoter analyses, these data suggest distinct mechanisms of CovR transcriptional control, which allow for differential expression of virulence genes in response to environmental cues.


2015 ◽  
Vol 82 (4) ◽  
pp. 1136-1146 ◽  
Author(s):  
Jinlei Zhao ◽  
Andrew N. Binns

ABSTRACTMonosaccharides capable of serving as nutrients for the soil bacteriumAgrobacterium tumefaciensare also inducers of thevirregulon present in the tumor-inducing (Ti) plasmid of this plant pathogen. One such monosaccharide is galacturonate, the predominant monomer of pectin found in plant cell walls. This ligand is recognized by the periplasmic sugar binding protein ChvE, which interacts with the VirA histidine kinase that controlsvirgene expression. Although ChvE is also a member of the ChvE-MmsAB ABC transporter involved in the utilization of many neutral sugars, it is not involved in galacturonate utilization. In this study, a putative tripartite ATP-independent periplasmic (TRAP) transporter, GaaPQM, is shown to be essential for the utilization of galacturonic acid; we show that residue R169 in the predicted sugar binding site of the GaaP is required for activity. The gene upstream ofgaaPQM(gaaR) encodes a member of the GntR family of regulators. GaaR is shown to repress the expression ofgaaPQM, and the repression is relieved in the presence of the substrate for GaaPQM. Moreover, GaaR is shown to bind putative promoter regions in the sequences required for galacturonic acid utilization. Finally,A. tumefaciensstrains carrying a deletion ofgaaPQMare more sensitive to galacturonate as an inducer ofvirgene expression, while the overexpression ofgaaPQMresults in strains being less sensitive to thisvirinducer. This supports a model in which transporter activity is crucial in ensuring thatvirgene expression occurs only at sites of high ligand concentration, such as those at a plant wound site.


mBio ◽  
2018 ◽  
Vol 9 (5) ◽  
Author(s):  
Benjamin J. Koestler ◽  
Carolyn R. Fisher ◽  
Shelley M. Payne

ABSTRACTThe intracellular human pathogenShigella flexneriinvades the colon epithelium, replicates to high cell density within the host cell, and then spreads to adjacent epithelial cells. WhenS. flexnerigains access to the host cytosol, the bacteria metabolize host cytosolic carbon using glycolysis and mixed acid fermentation, producing formate as a by-product. We show thatS. flexneriinfection results in the accumulation of formate within the host cell. Loss of pyruvate formate lyase (PFL; ΔpflB), which converts pyruvate to acetyl coenzyme A (CoA) and formate, eliminatesS. flexneriformate production and reduces the ability ofS. flexnerito form plaques in epithelial cell monolayers. This defect in PFL does not decrease the intracellular growth rate ofS. flexneri; rather, it affects cell-to-cell spread. TheS. flexneriΔpflBmutant plaque defect is complemented by supplying exogenous formate; conversely, deletion of theS. flexneriformate dehydrogenase genefdnGincreases host cell formate accumulation andS. flexneriplaque size. Furthermore, exogenous formate increases plaque size of the wild-type (WT)S. flexneristrain and promotesS. flexnericell-to-cell spread. We also demonstrate that formate increases the expression ofS. flexnerivirulence genesicsAandipaJ. IntracellularS. flexneriicsAandipaJexpression is dependent on the presence of formate, andipaJexpression correlates withS. flexneriintracellular density during infection. Finally, consistent with elevatedipaJ, we show that formate altersS. flexneri-infected host interferon- and tumor necrosis factor (TNF)-stimulated gene expression. We propose thatShigella-derived formate is an intracellular signal that modulates virulence in response to bacterial metabolism.IMPORTANCEShigellais an intracellular pathogen that invades the human host cell cytosol and exploits intracellular nutrients for growth, enabling the bacterium to create its own metabolic niche. ForShigellato effectively invade and replicate within the host cytoplasm, it must sense and adapt to changing environmental conditions; however, the mechanisms and signals sensed byS. flexneriare largely unknown. We have found that the secretedShigellametabolism by-product formate regulatesShigellaintracellular virulence gene expression and its ability to spread among epithelial cells. We propose thatShigellasenses formate accumulation in the host cytosol as a way to determine intracellularShigelladensity and regulate secreted virulence factors accordingly, enabling spatiotemporal regulation of effectors important for dampening the host immune response.


2012 ◽  
Vol 80 (12) ◽  
pp. 4344-4353 ◽  
Author(s):  
Cristiano G. Moreira ◽  
Vanessa Sperandio

ABSTRACTThe bacterial adrenergic sensor kinases QseC and QseE respond to epinephrine and/or norepinephrine to initiate a complex phosphorelay regulatory cascade that modulates virulence gene expression in several pathogens. We have previously shown that QseC activates virulence gene expression inSalmonella entericaserovar Typhimurium. Here we report the role of QseE inS. Typhimurium pathogenesis as well as the interplay between these two histidine sensor kinases in gene regulation. AnS. TyphimuriumqseEmutant is hampered in the invasion of epithelial cells and intramacrophage replication. The ΔqseCstrain is highly attenuated for intramacrophage survival but has only a minor defect in invasion. However, the ΔqseECstrain has only a slight attenuation in invasion, mirroring the ΔqseCstrain, and has an intermediary intramacrophage replication defect in comparison to the ΔqseEand ΔqseCstrains. The expressions of thesipAandsopBgenes, involved in the invasion of epithelial cells, are activated by epinephrine via QseE. The expression levels of these genes are still decreased in the ΔqseECdouble mutant, albeit to a lesser extent, congruent with the invasion phenotype of this mutant. The expression level of thesifAgene, important for intramacrophage replication, is decreased in theqseEmutant and the ΔqseECdouble mutant grownin vitro. However, as previously reported by us, the epinephrine-dependent activation of this gene occurs via QseC. In the systemic model ofS. Typhimurium infection of BALB/c mice, theqseCandqseEmutants are highly attenuated, while the double mutant has an intermediary phenotype. Altogether, these data suggest that both adrenergic sensors play an important role in modulating several aspects ofS. Typhimurium pathogenesis.


2011 ◽  
Vol 193 (22) ◽  
pp. 6331-6341 ◽  
Author(s):  
Disha Srivastava ◽  
Rebecca C. Harris ◽  
Christopher M. Waters

Vibrio choleraetransitions between aquatic environmental reservoirs and infection in the gastrointestinal tracts of human hosts. The second-messenger molecule cyclic di-GMP (c-di-GMP) and quorum sensing (QS) are important signaling systems that enableV. choleraeto alternate between these distinct environments by controlling biofilm formation and virulence factor expression. Here we identify a conserved regulatory mechanism inV. choleraethat integrates c-di-GMP and QS to control the expression of two transcriptional regulators:aphA, an activator of virulence gene expression and an important regulator of the quorum-sensing pathway, andvpsT, a transcriptional activator that induces biofilm formation. Surprisingly,aphAexpression was induced by c-di-GMP. Activation of bothaphAandvpsTby c-di-GMP requires the transcriptional activator VpsR, which binds to c-di-GMP. The VpsR binding site at each of these promoters overlaps with the binding site of HapR, the master QS regulator at high cell densities. Our results suggest thatV. choleraecombines information conveyed by QS and c-di-GMP to appropriately respond and adapt to divergent environments by modulating the expression of key transcriptional regulators.


Sign in / Sign up

Export Citation Format

Share Document