scholarly journals CsrA Supports both Environmental Persistence and Host-Associated Growth of Acinetobacter baumannii

2020 ◽  
Vol 88 (12) ◽  
Author(s):  
John M. Farrow ◽  
Greg Wells ◽  
Samantha Palethorpe ◽  
Mark D. Adams ◽  
Everett C. Pesci

ABSTRACT Acinetobacter baumannii is an opportunistic and frequently multidrug-resistant Gram-negative bacterial pathogen that primarily infects critically ill individuals. Indirect transmission from patient to patient in hospitals can drive infections, supported by this organism’s abilities to persist on dry surfaces and rapidly colonize susceptible individuals. To investigate how A. baumannii survives on surfaces, we cultured A. baumannii in liquid media for several days and then analyzed isolates that lost the ability to survive drying. One of these isolates carried a mutation that affected the gene encoding the carbon storage regulator CsrA. As we began to examine the role of CsrA in A. baumannii, we observed that the growth of ΔcsrA mutant strains was inhibited in the presence of amino acids. The ΔcsrA mutant strains had a reduced ability to survive drying and to form biofilms but an improved ability to tolerate increased osmolarity compared with the wild type. We also examined the importance of CsrA for A. baumannii virulence. The ΔcsrA mutant strains had a greatly reduced ability to kill Galleria mellonella larvae, could not replicate in G. mellonella hemolymph, and also had a growth defect in human serum. Together, these results show that CsrA is essential for the growth of A. baumannii on host-derived substrates and is involved in desiccation tolerance, implying that CsrA controls key functions involved in the transmission of A. baumannii in hospitals.

2012 ◽  
Vol 56 (11) ◽  
pp. 5961-5970 ◽  
Author(s):  
Luísa C. S. Antunes ◽  
Francesco Imperi ◽  
Fabrizia Minandri ◽  
Paolo Visca

ABSTRACTMultidrug-resistantAcinetobacter baumanniiposes a tremendous challenge to traditional antibiotic therapy. Due to the crucial role of iron in bacterial physiology and pathogenicity, we investigated iron metabolism as a possible target for anti-A. baumanniichemotherapy using gallium as an iron mimetic. Due to chemical similarity, gallium competes with iron for binding to several redox enzymes, thereby interfering with a number of essential biological reactions. We found that Ga(NO3)3, the active component of an FDA-approved drug (Ganite), inhibits the growth of a collection of 58A. baumanniistrains in both chemically defined medium and human serum, at concentrations ranging from 2 to 80 μM and from 4 to 64 μM, respectively. Ga(NO3)3delayed the entry ofA. baumanniiinto the exponential phase and drastically reduced bacterial growth rates. Ga(NO3)3activity was strongly dependent on iron availability in the culture medium, though the mechanism of growth inhibition was independent of dysregulation of gene expression controlled by the ferric uptake regulator Fur. Ga(NO3)3also protectedGalleria mellonellalarvae from lethalA. baumanniiinfection, with survival rates of ≥75%. At therapeutic concentrations for humans (28 μM plasma levels), Ga(NO3)3inhibited the growth in human serum of 76% of the multidrug-resistantA. baumanniiisolates tested by ≥90%, raising expectations on the therapeutic potential of gallium for the treatment ofA. baumanniibloodstream infections. Ga(NO3)3also showed strong synergism with colistin, suggesting that a colistin-gallium combination holds promise as a last-resort therapy for infections caused by pan-resistantA. baumannii.


2020 ◽  
Vol 202 (12) ◽  
Author(s):  
María Pérez-Varela ◽  
Aimee R. P. Tierney ◽  
Ju-Sim Kim ◽  
Andrés Vázquez-Torres ◽  
Philip Rather

ABSTRACT In response to nutrient depletion, the RelA and SpoT proteins generate the signaling molecule (p)ppGpp, which then controls a number of downstream effectors to modulate cell physiology. In Acinetobacter baumannii strain AB5075, a relA ortholog (ABUW_3302) was identified by a transposon insertion that conferred an unusual colony phenotype. An in-frame deletion in relA (ΔrelA) failed to produce detectable levels of ppGpp when amino acid starvation was induced with serine hydroxamate. The ΔrelA mutant was blocked from switching from the virulent opaque colony variant (VIR-O) to the avirulent translucent colony variant (AV-T), but the rate of AV-T to VIR-O switching was unchanged. In addition, the ΔrelA mutation resulted in a pronounced hypermotile phenotype on 0.35% agar plates. This hypermotility was dependent on the activation of a LysR regulator ABUW_1132, which was required for expression of AbaR, a LuxR family quorum-sensing regulator. In the ΔrelA mutant, ABUW_1132 was also required for the increased expression of an operon composed of the ABUW_3766-ABUW_3773 genes required for production of the surfactant-like lipopeptide acinetin 505. Additional phenotypes identified in the ΔrelA mutant included (i) cell elongation at high density, (ii) reduced formation of persister cells tolerant to colistin and rifampin, and (iii) decreased virulence in a Galleria mellonella model. IMPORTANCE Acinetobacter baumannii is a pathogen of worldwide importance. Due to the increasing prevalence of antibiotic resistance, these infections are becoming increasingly difficult to treat. New therapies are required to combat multidrug-resistant isolates. The role of RelA in A. baumannii is largely unknown. This study demonstrates that like in other bacteria, RelA controls a variety of functions, including virulence. Strategies to inhibit the activity of RelA and the resulting production of ppGpp could inhibit virulence and may represent a new therapeutic approach.


2019 ◽  
Vol 87 (12) ◽  
Author(s):  
Laura E. Hesse ◽  
Zachery R. Lonergan ◽  
William N. Beavers ◽  
Eric P. Skaar

ABSTRACT Acinetobacter baumannii is an opportunistic bacterial pathogen capable of causing a variety of infections, including pneumonia, sepsis, wound, and burn infections. A. baumannii is an increasing threat to public health due to the prevalence of multidrug-resistant strains, leading the World Health Organization to declare A. baumannii a “Priority 1: Critical” pathogen, for which the development of novel antimicrobials is desperately needed. Zinc (Zn) is an essential nutrient that pathogenic bacteria, including A. baumannii, must acquire from their hosts in order to survive. Consequently, vertebrate hosts have defense mechanisms to sequester Zn from invading bacteria through a process known as nutritional immunity. Here, we describe a Zn uptake (Znu) system that enables A. baumannii to overcome this host-imposed Zn limitation. The Znu system consists of an inner membrane ABC transporter and an outer membrane TonB-dependent receptor. Strains of A. baumannii lacking any individual Znu component are unable to grow in Zn-starved conditions, including in the presence of the host nutritional immunity protein calprotectin. The Znu system contributes to Zn-limited growth by aiding directly in the uptake of Zn into A. baumannii cells and is important for pathogenesis in murine models of A. baumannii infection. These results demonstrate that the Znu system allows A. baumannii to subvert host nutritional immunity and acquire Zn during infection.


2016 ◽  
Vol 60 (5) ◽  
pp. 2671-2679 ◽  
Author(s):  
Mya Thandar ◽  
Rolf Lood ◽  
Benjamin Y. Winer ◽  
Douglas R. Deutsch ◽  
Chad W. Euler ◽  
...  

ABSTRACTAcinetobacter baumanniiis a Gram-negative bacterial pathogen responsible for a range of nosocomial infections. The recent rise and spread of multidrug-resistantA. baumanniiclones has fueled a search for alternative therapies, including bacteriophage endolysins with potent antibacterial activities. A common feature of these lysins is the presence of a highly positively charged C-terminal domain with a likely role in promoting outer membrane penetration. In the present study, we show that the C-terminal amino acids 108 to 138 of phage lysin PlyF307, named P307, alone were sufficient to killA. baumannii(>3 logs). Furthermore, P307 could be engineered for improved activity, the most active derivative being P307SQ-8C(>5-log kill). Both P307 and P307SQ-8Cshowed highin vitroactivity againstA. baumanniiin biofilms. Moreover, P307SQ-8Cexhibited MICs comparable to those of levofloxacin and ceftazidime and acted synergistically with polymyxin B. Although the peptides were shown to kill by disrupting the bacterial cytoplasmic membrane, they did not lyse human red blood cells or B cells; however, serum was found to be inhibitory to lytic activity. In a murine model ofA. baumanniiskin infection, P307SQ-8Creduced the bacterial burden by ∼2 logs in 2 h. This study demonstrates the prospect of using peptide derivatives from bacteriophage lysins to treat topical infections and remove biofilms caused by Gram-negative pathogens.


2020 ◽  
Vol 89 (1) ◽  
pp. e00180-20
Author(s):  
Michael J. Gebhardt ◽  
Daniel M. Czyz ◽  
Shweta Singh ◽  
Daniel V. Zurawski ◽  
Lev Becker ◽  
...  

ABSTRACTA critical facet of mammalian innate immunity involves the hosts’ attempts to sequester and/or limit the availability of key metabolic products from pathogens. For example, nutritional immunity encompasses host approaches to limit the availability of key heavy metal ions such as zinc and iron. Previously, we identified several hundred genes in a multidrug-resistant isolate of Acinetobacter baumannii that are required for growth and/or survival in the Galleria mellonella infection model. In the present study, we further characterize one of these genes, a LysR family transcription regulator that we previously named GigC. We show that mutant strains lacking gigC have impaired growth in the absence of the amino acid cysteine and that gigC regulates the expression of several genes involved in the sulfur assimilation and cysteine biosynthetic pathways. We further show that cells harboring a deletion of the gigC gene are attenuated in two murine infection models, suggesting that the GigC protein, likely through its regulation of the cysteine biosynthetic pathway, plays a key role in the virulence of A. baumannii.


2015 ◽  
Vol 197 (12) ◽  
pp. 2027-2035 ◽  
Author(s):  
Larry A. Gallagher ◽  
Elizabeth Ramage ◽  
Eli J. Weiss ◽  
Matthew Radey ◽  
Hillary S. Hayden ◽  
...  

ABSTRACTAcinetobacter baumanniiis a Gram-negative bacterial pathogen notorious for causing serious nosocomial infections that resist antibiotic therapy. Research to identify factors responsible for the pathogen's success has been limited by the resources available for genome-scale experimental studies. This report describes the development of several such resources forA. baumanniistrain AB5075, a recently characterized wound isolate that is multidrug resistant and displays robust virulence in animal models. We report the completion and annotation of the genome sequence, the construction of a comprehensive ordered transposon mutant library, the extension of high-coverage transposon mutant pool sequencing (Tn-seq) to the strain, and the identification of the genes essential for growth on nutrient-rich agar. These resources should facilitate large-scale genetic analysis of virulence, resistance, and other clinically relevant traits that makeA. baumanniia formidable public health threat.IMPORTANCEAcinetobacter baumanniiis one of six bacterial pathogens primarily responsible for antibiotic-resistant infections that have become the scourge of health care facilities worldwide. Eliminating such infections requires a deeper understanding of the factors that enable the pathogen to persist in hospital environments, establish infections, and resist antibiotics. We present a set of resources that should accelerate genome-scale genetic characterization of these traits for a reference isolate ofA. baumanniithat is highly virulent and representative of current outbreak strains.


2015 ◽  
Vol 59 (12) ◽  
pp. 7657-7665 ◽  
Author(s):  
Brock A. Arivett ◽  
Steven E. Fiester ◽  
Emily J. Ohneck ◽  
William F. Penwell ◽  
Cynthia M. Kaufman ◽  
...  

ABSTRACTA paucity of effective, currently available antibiotics and a lull in antibiotic development pose significant challenges for treatment of patients with multidrug-resistant (MDR)Acinetobacter baumanniiinfections. Thus, novel therapeutic strategies must be evaluated to meet the demands of treatment of these often life-threatening infections. Accordingly, we examined the antibiotic activity of gallium protoporphyrin IX (Ga-PPIX) against a collection ofA. baumanniistrains, including nonmilitary and military strains and strains representing different clonal lineages and isolates classified as susceptible or MDR. Susceptibility testing demonstrated that Ga-PPIX inhibits the growth of all tested strains when cultured in cation-adjusted Mueller-Hinton broth, with a MIC of 20 μg/ml. This concentration significantly reduced bacterial viability, while 40 μg/ml killed all cells of theA. baumanniiATCC 19606Tand ACICU MDR isolate after 24-h incubation. Recovery of ATCC 19606Tand ACICU strains from infected A549 human alveolar epithelial monolayers was also decreased when the medium was supplemented with Ga-PPIX, particularly at a 40-μg/ml concentration. Similarly, the coinjection of bacteria with Ga-PPIX increased the survival ofGalleria mellonellalarvae infected with ATCC 19606Tor ACICU. Ga-PPIX was cytotoxic only when monolayers or larvae were exposed to concentrations 16-fold and 1,250-fold higher than those showing antibacterial activity, respectively. These results indicate that Ga-PPIX could be a viable therapeutic option for treatment of recalcitrantA. baumanniiinfections regardless of the resistance phenotype, clone lineage, time and site of isolation of strains causing these infections and their iron uptake phenotypes or the iron content of the media.


2016 ◽  
Vol 60 (10) ◽  
pp. 5806-5816 ◽  
Author(s):  
James M. Regeimbal ◽  
Anna C. Jacobs ◽  
Brendan W. Corey ◽  
Matthew S. Henry ◽  
Mitchell G. Thompson ◽  
...  

ABSTRACTMultidrug-resistant bacterial pathogens are an increasing threat to public health, and lytic bacteriophages have reemerged as a potential therapeutic option. In this work, we isolated and assembled a five-member cocktail of wild phages againstAcinetobacter baumanniiand demonstrated therapeutic efficacy in a mouse full-thickness dorsal infected wound model. The cocktail lowers the bioburden in the wound, prevents the spread of infection and necrosis to surrounding tissue, and decreases infection-associated morbidity. Interestingly, this effective cocktail is composed of four phages that do not kill the parent strain of the infection and one phage that simply delays bacterial growthin vitrovia a strong but incomplete selection event. The cocktail here appears to function in a combinatorial manner, as one constituent phage targets capsulatedA. baumanniibacteria and selects for loss of receptor, shifting the population to an uncapsulated state that is then sensitized to the remaining four phages in the cocktail. Additionally, capsule is a known virulence factor forA. baumannii, and we demonstrated that the emergent uncapsulated bacteria are avirulent in aGalleria mellonellamodel. These results highlight the importance of anticipating population changes during phage therapy and designing intelligent cocktails to control emergent strains, as well as the benefits of using phages that target virulence factors. Because of the efficacy of this cocktail isolated from a limited environmental pool, we have established a pipeline for developing new phage therapeutics against additional clinically relevant multidrug-resistant pathogens by using environmental phages sourced from around the globe.


Vaccines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 96
Author(s):  
Stephen J. Dollery ◽  
Daniel V. Zurawski ◽  
Elena K. Gaidamakova ◽  
Vera Y. Matrosova ◽  
John K. Tobin ◽  
...  

Acinetobacter baumannii is a bacterial pathogen that is often multidrug-resistant (MDR) and causes a range of life-threatening illnesses, including pneumonia, septicemia, and wound infections. Some antibiotic treatments can reduce mortality if dosed early enough before an infection progresses, but there are few other treatment options when it comes to MDR-infection. Although several prophylactic strategies have been assessed, no vaccine candidates have advanced to clinical trials or have been approved. Herein, we rapidly produced protective whole-cell immunogens from planktonic and biofilm-like cultures of A. baumannii, strain AB5075 grown using a variety of methods. After selecting a panel of five cultures based on distinct protein profiles, replicative activity was extinguished by exposure to 10 kGy gamma radiation in the presence of a Deinococcus antioxidant complex composed of manganous (Mn2+) ions, a decapeptide, and orthophosphate. Mn2+ antioxidants prevent hydroxylation and carbonylation of irradiated proteins, but do not protect nucleic acids, yielding replication-deficient immunogenic A. baumannii vaccine candidates. Mice were immunized and boosted twice with 1.0 × 107 irradiated bacterial cells and then challenged intranasally with AB5075 using two mouse models. Planktonic cultures grown for 16 h in rich media and biofilm cultures grown in static cultures underneath minimal (M9) media stimulated immunity that led to 80–100% protection.


2016 ◽  
Vol 198 (23) ◽  
pp. 3209-3219 ◽  
Author(s):  
Brian A. Renda ◽  
Cindy Chan ◽  
Kristin N. Parent ◽  
Jeffrey E. Barrick

ABSTRACTBacterial genomes commonly contain prophage sequences as a result of past infections with lysogenic phages. Many of these integrated viral sequences are believed to be cryptic, but prophage genes are sometimes coopted by the host, and some prophages may be reactivated to form infectious particles when cells are stressed or mutate. We found that a previously uncharacterized filamentous phage emerged from the genome ofAcinetobacter baylyiADP1 during a laboratory evolution experiment. This phage has a genetic organization similar to that of theVibrio choleraeCTXϕ phage. The emergence of the ADP1 phage was associated with the evolution of reduced transformability in our experimental populations, so we named it thecompetence-reducingacinetobacter phage (CRAϕ). Knocking out ADP1 genes required for competence leads to resistance to CRAϕ infection. Although filamentous bacteriophages are known to target type IV pili, this is the first report of a phage that apparently uses a competence pilus as a receptor.A. baylyimay be especially susceptible to this route of infection because every cell is competent during normal growth, whereas competence is induced only under certain environmental conditions or in a subpopulation of cells in other bacterial species. It is possible that CRAϕ-like phages restrict horizontal gene transfer in nature by inhibiting the growth of naturally transformable strains. We also found that prophages with homology to CRAϕ exist in several strains ofAcinetobacter baumannii. These CRAϕ-likeA. baumanniiprophages encode toxins similar to CTXϕ that might contribute to the virulence of this opportunistic multidrug-resistant pathogen.IMPORTANCEWe observed the emergence of a novel filamentous phage (CRAϕ) from the genome ofAcinetobacter baylyiADP1 during a long-term laboratory evolution experiment. CRAϕ is the first bacteriophage reported to require the molecular machinery involved in the uptake of environmental DNA for infection. Reactivation and evolution of CRAϕ reduced the potential for horizontal transfer of genes via natural transformation in our experiment. Risk of infection by similar phages may limit the expression and maintenance of bacterial competence in nature. The closest studied relative of CRAϕ is theVibrio choleraeCTXϕ phage. Variants of CRAϕ are found in the genomes ofAcinetobacter baumanniistrains, and it is possible that phage-encoded toxins contribute to the virulence of this opportunistic multidrug-resistant pathogen.


Sign in / Sign up

Export Citation Format

Share Document