scholarly journals The Life Cycle Stages of Pneumocystis murina Have Opposing Effects on the Immune Response to This Opportunistic Fungal Pathogen

2016 ◽  
Vol 84 (11) ◽  
pp. 3195-3205 ◽  
Author(s):  
Heather M. Evans ◽  
Grady L. Bryant ◽  
Beth A. Garvy

The cell wall β-glucans of Pneumocystis cysts have been shown to stimulate immune responses in lung epithelial cells, dendritic cells, and alveolar macrophages. Little is known about how the trophic life forms, which do not have a fungal cell wall, interact with these innate immune cells. Here we report differences in the responses of both neonatal and adult mice to the trophic and cystic life cycle stages of Pneumocystis murina . The adult and neonatal immune responses to infection with Pneumocystis murina trophic forms were less robust than the responses to infection with a physiologically normal mixture of cysts and trophic forms. Cysts promoted the recruitment of nonresident innate immune cells and T and B cells into the lungs. Cysts, but not trophic forms, stimulated increased concentrations of the cytokine gamma interferon (IFN-γ) in the alveolar spaces and an increase in the percentage of CD4 + T cells that produce IFN-γ. In vitro , bone marrow-derived dendritic cells (BMDCs) stimulated with cysts produced the proinflammatory cytokines interleukin 1β (IL-1β) and IL-6. In contrast, trophic forms suppressed antigen presentation to CD4 + T cells, as well as the β-glucan-, lipoteichoic acid (LTA)-, and lipopolysaccharide (LPS)-induced production of interleukin 1β (IL-1β), IL-6, and tumor necrosis factor alpha (TNF-α) by BMDCs. The negative effects of trophic forms were not due to ligation of mannose receptor. Our results indicate that optimal innate and adaptive immune responses to Pneumocystis species are dependent on stimulation with the cyst life cycle stage. Conversely, trophic forms suppress β-glucan-induced proinflammatory responses in vitro , suggesting that the trophic forms dampen cyst-induced inflammation in vivo .

2012 ◽  
Vol 81 (1) ◽  
pp. 238-248 ◽  
Author(s):  
Iuliana V. Ene ◽  
Shih-Chin Cheng ◽  
Mihai G. Netea ◽  
Alistair J. P. Brown

Candida albicansis a normal resident of the human gastrointestinal and urogenital tracts and also a prevalent fungal pathogen. During both commensalism and infection, it must match the immunological defenses of its host while adapting to environmental cues and the local nutrient status.C. albicansregularly colonizes glucose-poor niches, thereby depending upon alternative carbon sources for growth. However, most studies of host immune responses toC. albicanshave been performed on fungal cells grown on glucose, and the extent to which alternative physiologically relevant carbon sources impact innate immune responses has not been studied. The fungal cell wall is decorated with multifarious pathogen-associated molecular patterns and is the main target for recognition by host innate immune cells. Cell wall architecture is both robust and dynamic, and it is dramatically influenced by growth conditions. We found that growth ofC. albicanscells on lactate, a nonfermentative carbon source available in numerous anatomical niches, modulates their interactions with immune cells and the resultant cytokine profile. Notably, lactate-grownC. albicansstimulated interleukin-10 (IL-10) production while decreasing IL-17 levels, rendering these cells less visible to the immune system than were glucose-grown cells. This trend was observed in clinicalC. albicansisolates from different host niches and from different epidemiological clades. In addition, lactate-grownC. albicanscells were taken up by macrophages less efficiently, but they were more efficient at killing and escaping these phagocytic cells. Our data indicate that carbon source has a major impact upon theC. albicansinteraction with the innate immune system.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 561
Author(s):  
Sara Benedé ◽  
Leticia Pérez-Rodríguez ◽  
Mónica Martínez-Blanco ◽  
Elena Molina ◽  
Rosina López-Fandiño

Scope: House dust mite (HDM) induces Th2 responses in lungs and skin, but its effects in the intestine are poorly known. We aimed to study the involvement of HDM in the initial events that would promote sensitization through the oral route and eventually lead to allergy development. Methods and results: BALB/c mice were exposed intragastrically to proteolytically active and inactive HDM, as such, or in combination with egg white (EW), and inflammatory and type 2 responses were evaluated. Oral administration of HDM, by virtue of its proteolytic activity, promoted the expression, in the small intestine, of genes encoding tight junction proteins, proinflammatory and Th2-biasing cytokines, and it caused expansion of group 2 innate immune cells, upregulation of Th2 cytokines, and dendritic cell migration and activation. In lymphoid tissues, its proteolytically inactivated counterpart also exerted an influence on the expression of surface DC molecules involved in interactions with T cells and in Th2 cell differentiation, which was confirmed in in vitro experiments. However, in our experimental setting we did not find evidence for the promotion of sensitization to coadministered EW. Conclusion: Orally administered HDM upregulates tissue damage factors and also acts as an activator of innate immune cells behaving similarly to potent oral Th2 adjuvants.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
David Rohde ◽  
Melanie Boerries ◽  
Herzog Nicole ◽  
Gang Qiu ◽  
Philipp Ehlermann ◽  
...  

Background: S100A1, a cardiomyocyte specific inotropic calcium sensor protein, is released from infarcted human myocardium in the extracellular environment and circulation, reaching peak serum levels (1–2 μM) 8–9 hours after clinical onset. As growing evidence indicates that S100 proteins can act as pre-existing danger signals triggering the innate immune system into action upon release from injured host cells, we hypothesized that damage-released S100A1 can act as a cardiac danger signal alerting innate immune cells. Methods and Results: Here we report for the first time that necrotic cardiomyocytes release S100A1 protein in vitro, which is exclusively internalized by cardiac fibroblasts (CFs) in a clathrin- and caveolin-independent manner as shown by IF. Internalized S100A1 specifically activated MAPKs/SAPKs (p38, ERK1/2 and JNK) resulting in nuclear translocation of p65 (NF-kB) as assessed by Western blotting, EMSA and IF. In turn, S100A1 triggered an inflammatory gene program in CFs including enhanced expression of adhesion molecules, integrins, chemokines and cytokines including I-CAM, V-CAM, CD11b/18, IL1-alpha, MCP-1, TNF-alpha, SDF-1 among others as obtained by RT-PCR, Western blotting and ELISA. This resulted in enhanced chemoattraction and adhesion of monocytotic and stem cells to S100A1-activated CF as shown by Boyden-chamber and adhesion assays. In line with their proinflammatory transition, S100A1-activated CFs exhibited decreased collagen-1/-3 expression and de-novo collagen production, enhanced collagenolytic MMP-9 abundance and activity and increased levels of the antiangiogenic matricellular factor thrombospondin-2 reflecting extracellular matrix net degradation. Importantly, the immun-modulatory and antifibrotic actions of S100A1 protein in vitro were restricted to CFs, RAGE independent and occurred at concentrations (0.1–1 μM) that were found in patients after AMI. Conclusion: Our in vitro results indicate that S100A1 has the properties of a pre-exisiting endogenous cardiomyocyte danger signal transforming cardiac fibroblasts into immunmodulatory cells that might recruit innate immune cells to the site of cardiac injury and link cardiomyocyte damage to post-MI inflammation.


2021 ◽  
pp. ji1901348
Author(s):  
Kathrin Thiem ◽  
Samuel T. Keating ◽  
Mihai G. Netea ◽  
Niels P. Riksen ◽  
Cees J. Tack ◽  
...  

2012 ◽  
Vol 19 (9) ◽  
pp. 1393-1398 ◽  
Author(s):  
Yohsuke Ogawa ◽  
Yu Minagawa ◽  
Fang Shi ◽  
Masahiro Eguchi ◽  
Yoshihiro Muneta ◽  
...  

ABSTRACTInterleukin-18 (IL-18), which was originally called gamma interferon (IFN-γ)-inducing factor, has been shown to play an important role in innate and acquired immune responses. In this study, attenuatedErysipelothrix rhusiopathiaestrains were engineered to produce porcine IL-18 (poIL-18) and evaluated for their potential immunostimulatory effect in animals. Recombinant poIL-18 was successfully expressed in the recombinantE. rhusiopathiaestrains YS-1/IL-18 and KO/IL-18. The culture supernatant of YS-1/IL-18 was confirmed to induce IFN-γ production in murine splenocytesin vitro, and this production was inhibited by incubation with anti-poIL-18 monoclonal antibodies. Furthermore, more IFN-γ production was induced upon stimulation of splenocytes with concanavalin A for splenocytes from mice that were intraperitoneally inoculated with YS-1/IL-18 than for splenocytes from control mice inoculated with the parent strain YS-1. Peritoneal macrophages from mice preinoculated with YS-1/IL-18 exhibited enhanced phagocytosis ofSalmonella entericasubsp.entericaserovar Typhimurium compared with peritoneal macrophages from control mice preinoculated with YS-1. We also confirmed the immunostimulatory effect on humoral immune responses against antigens ofE. rhusiopathiaeandMycoplasma hyopneumoniaein gnotobiotic pigs that were orally preinoculated with KO/IL-18. Thus, these results provide evidence thatE. rhusiopathiaeis a promising vector for the expression of host cytokines and suggest the potential utility ofE. rhusiopathiaevector-encoded cytokines in the activation of host innate and acquired immune responses.


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Sung Won Lee ◽  
Hyun Jung Park ◽  
Nayoung Kim ◽  
Seokmann Hong

Natural killer dendritic cells (NKDCs) possess potent anti-tumor activity, but the cellular effect of NKDC interactions with other innate immune cells is unclear. In this study, we demonstrate that the interaction of NKDCs and natural killer T (NKT) cells is required for the anti-tumor immune responses that are elicited byα-galactosylceramide (α-GC) in mice. The rapid and strong expression of interferon-γby NKDCs afterα-GC stimulation was dependent on NKT cells. Various NK and DC molecular markers and cytotoxic molecules were up-regulated followingα-GC administration. This up-regulation could improve NKDC presentation of tumor antigens and increase cytotoxicity against tumor cells. NKDCs were required for the stimulation of DCs, NK cells, and NKT cells. The strong anti-tumor immune responses elicited byα-GC may be due to the down-regulation of regulatory T cells. Furthermore, the depletion of NKDCs dampened the tumor clearance mediated byα-GC-stimulated NKT cellsin vivo. Taken together, these results indicate that complex interactions of innate immune cells might be required to achieve optimal anti-tumor immune responses during the early stages of tumorigenesis.


mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Fabien Cottier ◽  
Sarah Sherrington ◽  
Sarah Cockerill ◽  
Valentina del Olmo Toledo ◽  
Stephen Kissane ◽  
...  

ABSTRACT Candida albicans is a commensal yeast of the human gut which is tolerated by the immune system but has the potential to become an opportunistic pathogen. One way in which C. albicans achieves this duality is through concealing or exposing cell wall pathogen-associated molecular patterns (PAMPs) in response to host-derived environment cues (pH, hypoxia, and lactate). This cell wall remodeling allows C. albicans to evade or hyperactivate the host’s innate immune responses, leading to disease. Previously, we showed that adaptation of C. albicans to acidic environments, conditions encountered during colonization of the female reproductive tract, induces significant cell wall remodeling resulting in the exposure of two key fungal PAMPs (β-glucan and chitin). Here, we report that this pH-dependent cell wall remodeling is time dependent, with the initial change in pH driving cell wall unmasking, which is then remasked at later time points. Remasking of β-glucan was mediated via the cell density-dependent fungal quorum sensing molecule farnesol, while chitin remasking was mediated via a small, heat-stable, nonproteinaceous secreted molecule(s). Transcript profiling identified a core set of 42 genes significantly regulated by pH over time and identified the transcription factor Efg1 as a regulator of chitin exposure through regulation of CHT2. This dynamic cell wall remodeling influenced innate immune recognition of C. albicans, suggesting that during infection, C. albicans can manipulate the host innate immune responses. IMPORTANCE Candida albicans is part of the microbiota of the skin and gastrointestinal and reproductive tracts of humans and has coevolved with us for millennia. During that period, C. albicans has developed strategies to modulate the host’s innate immune responses, by regulating the exposure of key epitopes on the fungal cell surface. Here, we report that exposing C. albicans to an acidic environment, similar to the one of the stomach or vagina, increases the detection of the yeast by macrophages. However, this effect is transitory, as C. albicans is able to remask these epitopes (glucan and chitin). We found that glucan remasking is controlled by the production of farnesol, a molecule secreted by C. albicans in response to high cell densities. However, chitin-remasking mechanisms remain to be identified. By understanding the relationship between environmental sensing and modulation of the host-pathogen interaction, new opportunities for the development of innovative antifungal strategies are possible.


2017 ◽  
Vol 214 (5) ◽  
pp. 1313-1331 ◽  
Author(s):  
Shoko Kitada ◽  
Hisako Kayama ◽  
Daisuke Okuzaki ◽  
Ritsuko Koga ◽  
Masao Kobayashi ◽  
...  

Inappropriate IL-17 responses are implicated in chronic tissue inflammation. IL-23 contributes to Trypanosoma cruzi–specific IL-17 production, but the molecular mechanisms underlying regulation of the IL-23–IL-17 axis during T. cruzi infection are poorly understood. Here, we demonstrate a novel function of BATF2 as a negative regulator of Il23a in innate immune cells. IL-17, but not IFN-γ, was more highly produced by CD4+ T cells from spleens and livers of T. cruzi–infected Batf2−/− mice than by those of wild-type mice. In this context, Batf2−/− mice showed severe multiorgan pathology despite reduced parasite burden. T. cruzi–induced IL-23 production was increased in Batf2−/− innate immune cells. The T. cruzi–induced enhanced Th17 response was abrogated in Batf2−/−Il23a−/− mice. The interaction of BATF2 with c-JUN prevented c-JUN–ATF-2 complex formation, inhibiting Il23a expression. These results demonstrate that IFN-γ–inducible BATF2 in innate immune cells controls Th17-mediated immunopathology by suppressing IL-23 production during T. cruzi infection.


2005 ◽  
Vol 35 (6) ◽  
pp. 1928-1938 ◽  
Author(s):  
Stephanie Nance ◽  
Richard Cross ◽  
Ae-Kyung Yi ◽  
Elizabeth A. Fitzpatrick

mSphere ◽  
2017 ◽  
Vol 2 (5) ◽  
Author(s):  
Miranda J. Neubert ◽  
Elizabeth A. Dahlmann ◽  
Andrew Ambrose ◽  
Michael D. L. Johnson

ABSTRACT As mechanisms of copper toxicity are emerging, bacterial processing of intracellular copper, specifically inside Streptococcus pneumoniae, remains unclear. In this study, we investigated two proteins encoded by the copper export operon: the repressor, CopY, and the copper chaperone, CupA. Zinc suppressed transcription of the copper export operon by increasing the affinity of CopY for DNA. Furthermore, CupA was able to chelate copper from CopY not bound to DNA and reduce it from Cu2+ to Cu1+. This reduced copper state is essential for bacterial copper export via CopA. In view of the fact that innate immune cells use copper to kill pathogenic bacteria, understanding the mechanisms of copper export could expose new small-molecule therapeutic targets that could work synergistically with copper against pathogenic bacteria. Any metal in excess can be toxic; therefore, metal homeostasis is critical to bacterial survival. Bacteria have developed specialized metal import and export systems for this purpose. For broadly toxic metals such as copper, bacteria have evolved only export systems. The copper export system (cop operon) usually consists of the operon repressor, the copper chaperone, and the copper exporter. In Streptococcus pneumoniae, the causative agent of pneumonia, otitis media, sepsis, and meningitis, little is known about operon regulation. This is partly due to the S. pneumoniae repressor, CopY, and copper chaperone, CupA, sharing limited homology to proteins of putative related function and confirmed established systems. In this study, we examined CopY metal crosstalk, CopY interactions with CupA, and how CupA can control the oxidation state of copper. We found that CopY bound zinc and increased the DNA-binding affinity of CopY by roughly an order of magnitude over that of the apo form of CopY. Once copper displaced zinc in CopY, resulting in operon activation, CupA chelated copper from CopY. After copper was acquired from CopY or other sources, if needed, CupA facilitated the reduction of Cu2+ to Cu1+, which is the exported copper state. Taken together, these data show novel mechanisms for copper processing in S. pneumoniae. IMPORTANCE As mechanisms of copper toxicity are emerging, bacterial processing of intracellular copper, specifically inside Streptococcus pneumoniae, remains unclear. In this study, we investigated two proteins encoded by the copper export operon: the repressor, CopY, and the copper chaperone, CupA. Zinc suppressed transcription of the copper export operon by increasing the affinity of CopY for DNA. Furthermore, CupA was able to chelate copper from CopY not bound to DNA and reduce it from Cu2+ to Cu1+. This reduced copper state is essential for bacterial copper export via CopA. In view of the fact that innate immune cells use copper to kill pathogenic bacteria, understanding the mechanisms of copper export could expose new small-molecule therapeutic targets that could work synergistically with copper against pathogenic bacteria.


Sign in / Sign up

Export Citation Format

Share Document