scholarly journals Whole-Genome Characterization of Bacillus cereus Associated with Specific Disease Manifestations

2017 ◽  
Vol 86 (2) ◽  
Author(s):  
T. Chang ◽  
J. W. Rosch ◽  
Z. Gu ◽  
H. Hakim ◽  
C. Hewitt ◽  
...  

ABSTRACTBacillus cereusremains an important cause of infections, particularly in immunocompromised hosts. While typically associated with enteric infections, disease manifestations can be quite diverse and include skin infections, bacteremia, pneumonia, and meningitis. Whether there are any genetic correlates of bacterial strains with particular clinical manifestations remains unknown. To address this gap in understanding, we undertook whole-genome analysis ofB. cereusstrains isolated from patients with a range of disease manifestations, including noninvasive colonizing disease, superficial skin infections, and invasive bacteremia. Interestingly, strains involved in skin infection tended to form a distinct genetic cluster compared to isolates associated with invasive disease. Other disease manifestations, despite not being exclusively clustered, nonetheless had unique genetic features. The unique features associated with the specific types of infections ranged from traditional virulence determinants to metabolic pathways and gene regulators. These data represent the largest genetic analysis to date of pathogenicB. cereusisolates with associated clinical parameters.

2021 ◽  
Vol 70 (7) ◽  
Author(s):  
Maria M. Konstantinovski ◽  
Karin Ellen Veldkamp ◽  
Adriana P. M. Lavrijsen ◽  
Thijs Bosch ◽  
Margriet E. M. Kraakman ◽  
...  

Introduction. Staphylococcus aureus is a major cause of hospital infections worldwide. Awareness towards methicillin-resistant S. aureus (MRSA) infections is high but attention towards borderline oxacillin-resistant S. aureus (BORSA) is limited, possibly due to an underestimated clinical relevance, presumption of low incidence and diagnostic limitations. Gap statement. BORSA surveillance has not been routinely implemented, and thus consensus with regard to a definition and infection control measures is lacking. Aim. Our goals were to investigate the occurrence, molecular characteristics and clinical manifestations of BORSA infections in the hospital setting. Methodology. Following an increased incidence in 2016, BORSA cases in 2014/2016 (in our institution) were more specifically evaluated. Medical records were reviewed to investigate epidemiological links, clinical characteristics and outcomes. Resistance and virulence markers were assessed by whole genome sequencing (WGS). Conventional methods: amplified fragment length polymorphism (AFLP) ; multilocus sequence typing (MLST) and multiple locus variable-number tandem repeat analysis (MLVA) were compared with core genome MLST (cgMLST) and whole-genome single nucleotide polymorphism (wgSNP) analysis to confirm genetic clusters. Results. From 2009 to 2013, BORSA comprised 0.1 % of all clinical S. aureus strains. In 2016, the incidence was six-fold higher in comparison to the baseline. Whole-genome SNP and cgMLST confirmed two BORSA clusters among patients with dermatological conditions. Patients with BORSA presented with skin infections, and one case developed a severe invasive infection with a fatal outcome. Infection control measures successfully prevented further transmission in both clusters. WGS findings showed that BORSA strains carried multiple resistance and virulence genes with increased pathogenic potential. Conclusion. WGS and cgMLST effectively characterized and confirmed BORSA clusters among at-risk patients with clinical manifestations ranging from mild skin infections to life-threatening bacteraemia. Clinical awareness and active monitoring are therefore warranted for the timely implementation of infection control measures to prevent BORSA transmission in high-risk patients.


2015 ◽  
Vol 59 (7) ◽  
pp. 4215-4225 ◽  
Author(s):  
Miki Matsuo ◽  
Tomomi Hishinuma ◽  
Yuki Katayama ◽  
Keiichi Hiramatsu

ABSTRACTVarious mutations in therpoBgene, which encodes the RNA polymerase β subunit, are associated with increased vancomycin (VAN) resistance in vancomycin-intermediateStaphylococcus aureus(VISA) and heterogeneously VISA (hVISA) strains. We reported thatrpoBmutations are also linked to the expression of the recently found “slow VISA” (sVISA) phenotype (M. Saito, Y. Katayama, T. Hishinuma, A. Iwamoto, Y. Aiba, K Kuwahara-Arai, L. Cui, M. Matsuo, N. Aritaka, and K. Hiramatsu, Antimicrob Agents Chemother 58:5024–5035, 2014,http://dx.doi.org/10.1128/AAC.02470-13). Because RpoC and RpoB are components of RNA polymerase, we examined the effect of therpoC(P440L) mutation on the expression of the sVISA phenotype in the Mu3fdh2*V6-5 strain (V6-5), which was derived from a previously reported hVISA strain with the VISA phenotype. V6-5 had an extremely prolonged doubling time (DT) (72 min) and high vancomycin MIC (16 mg/liter). However, the phenotype of V6-5 was unstable, and the strain frequently reverted to hVISA with concomitant loss of low growth rate, cell wall thickness, and reduced autolysis. Whole-genome sequencing of phenotypic revertant strain V6-5-L1 and comparison with V6-5 revealed a second mutation, F562L, inrpoC. Introduction of the wild-type (WT)rpoCgene using a multicopy plasmid resolved the sVISA phenotype of V6-5, indicating that therpoC(P440L) mutant expressed the sVISA phenotype in hVISA. To investigate the mechanisms of resistance in the sVISA strain, we independently isolated an additional 10 revertants to hVISA and VISA. In subsequent whole-genome analysis, we identified compensatory mutations in the genes of three distinct functional categories: therpoCgene itself as regulatory mutations, peptidoglycan biosynthesis genes, andrelQ, which is involved in the stringent response. It appears that therpoC(P440L) mutation causes the sVISA phenotype by augmenting cell wall peptidoglycan synthesis and through the control of the stringent response.


2014 ◽  
Vol 53 (1) ◽  
pp. 323-326 ◽  
Author(s):  
Birgit De Smet ◽  
Derek S. Sarovich ◽  
Erin P. Price ◽  
Mark Mayo ◽  
Vanessa Theobald ◽  
...  

Burkholderia pseudomalleiisolates with shared multilocus sequence types (STs) have not been isolated from different continents. We identified two STs shared between Australia and Cambodia. Whole-genome analysis revealed substantial diversity within STs, correctly identified the Asian or Australian origin, and confirmed that these shared STs were due to homoplasy.


2020 ◽  
Vol 9 (45) ◽  
Author(s):  
Yujie Zhang ◽  
Yen-Te Liao ◽  
Vivian C. H. Wu

ABSTRACT Shiga toxin-producing Escherichia coli (STEC) serotype O103 is one of the primary pathogenic contaminants of beef products, contributing to several foodborne outbreaks in recent years. Here, we report the whole-genome sequence of a STEC O103:H2 strain isolated from cattle feces that contains a locus of enterocyte effacement (LEE) pathogenicity island.


2017 ◽  
Vol 5 (3) ◽  
Author(s):  
Mariam Iskander ◽  
Kristy Hayden ◽  
Gary Van Domselaar ◽  
Raymond Tsang

ABSTRACT Haemophilus influenzae is an important human pathogen that primarily infects small children. In recent years, H. influenzae serotype a has emerged as a significant cause of invasive disease among indigenous populations. Here, we present the first complete whole-genome sequence of H. influenzae serotype a.


2020 ◽  
Vol 86 (9) ◽  
Author(s):  
Adrián Álvarez-Molina ◽  
María de Toro ◽  
Lorena Ruiz ◽  
Mercedes López ◽  
Miguel Prieto ◽  
...  

ABSTRACT This study was aimed at assessing whether the repeated exposure of 12 strains of Salmonella spp., Escherichia coli, and Listeria monocytogenes to alternative nonthermal decontamination techniques with UV light (UV-C) and nonthermal atmospheric plasma (NTAP) may cause the emergence of variants showing increased resistance to clinically relevant antibiotics (ampicillin, cefotaxime, ciprofloxacin, gentamicin, streptomycin, tetracycline, erythromycin, vancomycin, and colistin). UV-C and NTAP treatments were applied on the surface of inoculated brain heart infusion (BHI) agar plates. Survivors were recovered and after 24 h of growth in BHI broth were again subjected to the decontamination treatment; this was repeated for 10 consecutive cycles. A total of 174 strain/decontamination technique/antibiotic combinations were tested, and 12 variant strains with increased resistance to one of the antibiotics studied were identified, with the increases in the MICs in Mueller-Hinton broth ranging from 2- to 256-fold. The variant strains of Salmonella spp. isolated were further characterized through phenotypic screenings and whole-genome sequencing (WGS) analyses. Most changes in susceptibility were observed for antibiotics that act at the level of protein synthesis (aminoglycosides, tetracyclines, and glycylcyclines) or DNA replication (fluoroquinolones), as well as for polymyxins. No changes in resistance to β-lactams were detected. WGS analyses showed the occurrence of sequence alterations in some antibiotic cellular targets (e.g., gyrA for ciprofloxacin-resistant variants, rpsL for a streptomycin-resistant variant), accompanied by variations in stress response regulators and membrane transporters likely involved in the nonselective efflux of antibiotics, which altogether resulted in a low- to medium-level increase in microbial resistance to several antibiotics. IMPORTANCE The emergence and spread of antibiotic resistance along the food chain can be influenced by the different antimicrobial strategies used from farm to fork. This study evidences that two novel, not yet widely used, nonthermal microbial decontamination techniques, UV light and nonthermal atmospheric plasma, can select variants with increased resistance to various clinically relevant antibiotics, such as ciprofloxacin, streptomycin, tetracycline, and erythromycin. Whole-genome analysis of the resistant variants obtained for Salmonella spp. allowed identification of the genetic changes responsible for the observed phenotypes and suggested that some antimicrobial classes are more susceptible to the cross-resistance phenomena observed. This information is relevant, since these novel decontamination techniques are being proposed as possible alternative green techniques for the decontamination of environments and equipment in food and clinical settings.


2019 ◽  
Vol 8 (47) ◽  
Author(s):  
Miyako Hikichi ◽  
Miki Nagao ◽  
Kazunori Murase ◽  
Chihiro Aikawa ◽  
Takashi Nozawa ◽  
...  

Methicillin-resistant Staphylococcus aureus (MRSA) is a major pathogen causing nosocomial infections, and the clinical manifestations of MRSA range from asymptomatic colonization of the nasal mucosa to soft tissue infection to fulminant invasive disease. Here, we report the complete genome sequences of eight MRSA strains isolated from patients in Japan.


mBio ◽  
2020 ◽  
Vol 11 (6) ◽  
Author(s):  
Daichi Morita ◽  
Masatomo Morita ◽  
Munirul Alam ◽  
Asish K. Mukhopadhyay ◽  
Fatema-tuz Johura ◽  
...  

ABSTRACT Vibrio cholerae serogroup O1 is responsible for epidemic and pandemic cholera and remains a global public health threat. This organism has been well established as a resident flora of the aquatic environment that alters its phenotypic and genotypic attributes for better adaptation to the environment. To reveal the diversity of clinical isolates of V. cholerae O1 in the Bay of Bengal, we performed whole-genome sequencing of isolates from Kolkata, India, and Dhaka, Bangladesh, collected between 2009 and 2016. Comparison with global isolates by phylogenetic analysis placed the current isolates in two Asian lineages, with lineages 1 and 2 predominant in Dhaka and Kolkata, respectively. Each lineage possessed different genetic traits in the cholera toxin B subunit gene, Vibrio seventh pandemic island II, integrative and conjugative element, and antibiotic-resistant genes. Thus, although recent global transmission of V. cholerae O1 from South Asia has been attributed only to isolates of lineage 2, another distinct lineage exists in Bengal. IMPORTANCE Cholera continues to be a global concern, as large epidemics have occurred recently in Haiti, Yemen, and countries of sub-Saharan Africa. A single lineage of Vibrio cholerae O1 has been considered to be introduced into these regions from South Asia and to cause the spread of cholera. Using genomic epidemiology, we showed that two distinct lineages exist in Bengal, one of which is linked to the global lineage. The other lineage was found only in Iran, Iraq, and countries in Asia and differed from the global lineage regarding cholera toxin variant and drug resistance profile. Therefore, the potential transmission of this lineage to other regions would likely cause worldwide cholera spread and may result in this lineage replacing the current global lineage.


2016 ◽  
Vol 60 (10) ◽  
pp. 5777-5786 ◽  
Author(s):  
Mónica García-Solache ◽  
Francois Lebreton ◽  
Robert E. McLaughlin ◽  
James D. Whiteaker ◽  
Michael S. Gilmore ◽  
...  

ABSTRACTThe transfer of DNA betweenEnterococcus faeciumstrains has been characterized both by the movement of well-defined genetic elements and by the large-scale transfer of genomic DNA fragments. In this work, we report on the whole-genome analysis of transconjugants resulting from mating events between the vancomycin-resistantE. faeciumC68 strain and the vancomycin-susceptible D344RRF strain to discern the mechanism by which the transferred regions enter the recipient chromosome. Vancomycin-resistant transconjugants from five independent matings were analyzed by whole-genome sequencing. In all cases but one, the penicillin binding protein 5 (pbp5) gene and the Tn5382vancomycin resistance transposon were transferred together and replaced the correspondingpbp5region of D344RRF. In one instance, Tn5382inserted independently downstream of the D344RRFpbp5gene. Single nucleotide variant (SNV) analysis suggested that entry of donor DNA into the recipient chromosome occurred by recombination across regions of homology between donor and recipient chromosomes, rather than through insertion sequence-mediated transposition. The transfer of genomic DNA was also associated with the transfer of C68 plasmid pLRM23 and another putative plasmid. Our data are consistent with the initiation of transfer by cointegration of a transferable plasmid with the donor chromosome, with subsequent circularization of the plasmid-chromosome cointegrant in the donor prior to transfer. Entry into the recipient chromosome most commonly occurred across regions of homology between donor and recipient chromosomes.


2017 ◽  
Vol 5 (5) ◽  
Author(s):  
Marie-Hélène Guinebretière ◽  
Valentin Loux ◽  
Véronique Martin ◽  
Pierre Nicolas ◽  
Vincent Sanchis ◽  
...  

ABSTRACT Bacteria from the Bacillus cereus group exhibit genetic and physiological diversity through different ecotypes. Here, we present the draft genome sequences of 20 bacterial strains belonging to the contrasted psychrotolerant and thermotolerant ecotypes.


Sign in / Sign up

Export Citation Format

Share Document