Surface Glycopolymers Are Crucial forIn VitroAnti-Wall Teichoic Acid IgG-Mediated Complement Activation and Opsonophagocytosis of Staphylococcus aureus
ABSTRACTThe cell envelopes of many Gram-positive bacteria contain wall teichoic acids (WTAs).Staphylococcus aureusWTAs are composed of ribitol phosphate (RboP) or glycerol phosphate (GroP) backbones substituted withd-alanine andN-acetyl-d-glucosamine (GlcNAc) orN-acetyl-d-galactosamine (GalNAc). Two WTA glycosyltransferases, TarM and TarS, are responsible for modifying the RboP WTA with α-GlcNAc and β-GlcNAc, respectively. We recently reported that purified human serum anti-WTA IgG specifically recognizes β-GlcNAc of the staphylococcal RboP WTA and then facilitates complement C3 deposition and opsonophagocytosis ofS. aureuslaboratory strains. This prompted us to examine whether anti-WTA IgG can induce C3 deposition on a diverse set of clinicalS. aureusisolates. To this end, we compared anti-WTA IgG-mediated C3 deposition and opsonophagocytosis abilities using 13 different staphylococcal strains. Of note, the majority ofS. aureusstrains tested was recognized by anti-WTA IgG, resulting in C3 deposition and opsonophagocytosis. A minority of strains was not recognized by anti-WTA IgG, which correlated with either extensive capsule production or an alteration in the WTA glycosylation pattern. Our results demonstrate that the presence of WTAs with TarS-mediated glycosylation with β-GlcNAc in clinically isolatedS. aureusstrains is an important factor for induction of anti-WTA IgG-mediated C3 deposition and opsonophagocytosis.