scholarly journals Type 2 Secretion Promotes Enterohemorrhagic Escherichia coli Adherence and Intestinal Colonization

2008 ◽  
Vol 76 (5) ◽  
pp. 1858-1865 ◽  
Author(s):  
Theresa D. Ho ◽  
Brigid M. Davis ◽  
Jennifer M. Ritchie ◽  
Matthew K. Waldor

ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) is a noninvasive food-borne pathogen that colonizes the distal ileum and colon. Proteins encoded in the EHEC locus of enterocyte effacement (LEE) pathogenicity island are known to contribute to this pathogen's adherence to epithelial cells and intestinal colonization. The role of non-LEE-encoded proteins in these processes is not as clear. We found that the Z2053 gene (designated adfO here), a gene located in a cryptic EHEC prophage, exhibits similarity to adherence and/or colonization factor genes found in several other enteric pathogens. An EHEC adfO mutant exhibited marked reductions in adherence to HeLa cells and in the secretion of several proteins into the supernatant. YodA, one of these secreted proteins, was found to be a substrate of the EHEC pO157-encoded type 2 secretion system (T2SS). Both the T2SS and YodA proved to be essential for EHEC adherence to cultured HeLa cell monolayers. Using an infant rabbit model of infection, we found that the adfO mutation did not affect colonization but that the colonization of an etpC (T2SS) mutant was reduced ∼5-fold. A strain deficient in YodA had a more severe colonization defect; however, this strain also exhibited a growth defect in vitro. Overall, our findings indicate that the pO157-encoded T2SS contributes to EHEC adherence and intestinal colonization and thus show that EHEC pathogenicity depends on type 2 secretion as well as type 3 secretion.

2006 ◽  
Vol 75 (4) ◽  
pp. 1661-1666 ◽  
Author(s):  
Theresa Deland Ho ◽  
Matthew K. Waldor

ABSTRACT Enterohemorrhagic Escherichia coli (EHEC), especially E. coli O157:H7, is an emerging cause of food-borne illness. Unfortunately, E. coli O157 cannot be genetically manipulated using the generalized transducing phage P1, presumably because its extensive O antigen obscures the P1 receptor, the lipopolysaccharide (LPS) core subunit. The GalE, GalT, GalK, and GalU proteins are necessary for modifying galactose before it can be assembled into the repeating subunit of the O antigen. Here, we constructed E. coli O157:H7 gal mutants which presumably have little or no O antigen. These strains were able to adsorb P1. P1 lysates grown on the gal mutant strains could be used to move chromosomal markers between EHEC strains, thereby facilitating genetic manipulation of E. coli O157:H7. The gal mutants could easily be reverted to a wild-type Gal+ strain using P1 transduction. We found that the O157:H7 galETKM::aad-7 deletion strain was 500-fold less able to colonize the infant rabbit intestine than the isogenic Gal+ parent, although it displayed no growth defect in vitro. Furthermore, in vivo a Gal+ revertant of this mutant outcompeted the galETKM deletion strain to an extent similar to that of the wild type. This suggests that the O157 O antigen is an important intestinal colonization factor. Compared to the wild type, EHEC gal mutants were 100-fold more sensitive to a peptide derived from bactericidal permeability-increasing protein, a bactericidal protein found on the surface of intestinal epithelial cells. Thus, one way in which the O157 O antigen may contribute to EHEC intestinal colonization is to promote resistance to host-derived antimicrobial polypeptides.


2001 ◽  
Vol 69 (6) ◽  
pp. 4027-4033 ◽  
Author(s):  
Simon J. Elliott ◽  
Efrosinia O. Krejany ◽  
Jay L. Mellies ◽  
Roy M. Robins-Browne ◽  
Chihiro Sasakawa ◽  
...  

ABSTRACT The function of the rorf2 gene located on the locus of enterocyte effacement (LEE) pathogenicity island of enteropathogenicEscherichia coli (EPEC) has not been described. We report that rorf2 encodes a novel protein, named EspG, which is secreted by the type III secretory system and which is translocated into host epithelial cells. EspG is homologous withShigella flexneri protein VirA, and the clonedespG (rorf2) gene can rescue invasion in a Shigella virA mutant, indicating that these proteins are functionally equivalent in Shigella. An EPECespG mutant had no apparent defects in in vitro assays of virulence phenotypes, but a rabbit diarrheagenic E. coli strain carrying a mutant espG showed diminished intestinal colonization and yet diarrheal attack rates similar to those of the wild type. A second EspG homolog, Orf3, is encoded on the EspC pathogenicity islet. The clonedorf3 gene could also rescue invasion in aShigella virA mutant, but an EPEC espG orf3 double mutant was not diminished in any tested in vitro assays for EPEC virulence factors. Our results indicate that EspG plays an accessory but as yet undefined role in EPEC virulence that may involve intestinal colonization.


2005 ◽  
Vol 73 (12) ◽  
pp. 8411-8417 ◽  
Author(s):  
Olivier Marchés ◽  
Siouxsie Wiles ◽  
Francis Dziva ◽  
Roberto M. La Ragione ◽  
Stephanie Schüller ◽  
...  

ABSTRACT Intestinal colonization by enteropathogenic and enterohemorrhagic Escherichia coli requires the locus of enterocyte effacement-encoded type III secretion system. We report that NleC and NleD are translocated into host cells via this system. Deletion mutants induced attaching and effacing lesions in vitro, while infection of calves or lambs showed that neither gene was required for colonization.


mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Tianyuan Jia ◽  
Bin Liu ◽  
Huiqian Mu ◽  
Chengqian Qian ◽  
Lu Wang ◽  
...  

ABSTRACT Enterohemorrhagic Escherichia coli serotype O157:H7 (O157) is a critical, foodborne, human intestinal pathogen that causes severe acute hemorrhagic diarrhea, abdominal cramping, and even death. Small RNAs (sRNAs) are noncoding regulatory molecules that sense environmental changes and trigger various virulence-related signaling pathways; however, few such sRNAs have been identified in O157. Here, we report a novel sRNA, EsrF that senses high ammonium concentrations in the colon and enhances O157 pathogenicity by promoting bacterial motility and adhesion to host cells. Specifically, EsrF was found to directly interact with the 5′ untranslated regions of the flagellar biosynthetic gene, flhB, mRNA and increase its abundance, thereby upregulating expression of essential flagellar genes, including flhD, flhC, fliA, and fliC, leading to elevated O157 motility and virulence. Meanwhile, an infant rabbit model of O157 infection showed that deletion of esrF and flhB significantly attenuates O157 pathogenicity. Furthermore, NtrC—the response regulator of the NtrC/B two-component system—was found to exert direct, negative regulation of esrF expression. Meanwhile, high ammonium concentrations in the colon release the inhibitory effect of NtrC on esrF, thereby enhancing its expression and subsequently promoting bacterial colonization in the host colon. Our work reveals a novel, sRNA-centered, virulence-related signaling pathway in O157 that senses high ammonium concentrations. These findings provide novel insights for future research on O157 pathogenesis and targeted treatment strategies. IMPORTANCE The process by which bacteria sense environmental cues to regulate their virulence is complex. Several studies have focused on regulating the expression of the locus of enterocyte effacement pathogenicity island in the typical gut pathogenic bacterium, O157. However, few investigations have addressed the regulation of other virulence factors in response to intestinal signals. In this study, we report our discovery of a novel O157 sRNA, EsrF, and demonstrate that it contributed to bacterial motility and virulence in vitro and in vivo through the regulation of bacterial flagellar synthesis. Furthermore, we show that high ammonium concentrations in the colon induced esrF expression to promote bacterial virulence by releasing the repression of esrF by NtrC. This study highlights the importance of sRNA in regulating the motility and pathogenicity of O157.


2012 ◽  
Vol 80 (3) ◽  
pp. 914-920 ◽  
Author(s):  
Sonja J. Lloyd ◽  
Jennifer M. Ritchie ◽  
Maricarmen Rojas-Lopez ◽  
Carla A. Blumentritt ◽  
Vsevolod L. Popov ◽  
...  

Escherichia coliO157:H7 causes food and waterborne enteric infections that can result in hemorrhagic colitis and life-threatening hemolytic uremic syndrome. Intimate adherence of the bacteria to intestinal epithelial cells is mediated by intimin, butE. coliO157:H7 also possess several other putative adhesins, including curli and two operons that encode long polar fimbriae (Lpf). To assess the importance of Lpf for intestinal colonization, we performed competition experiments betweenE. coliO157:H7 and an isogenic ΔlpfA1ΔlpfA2double mutant in the infant rabbit model. The mutant was outcompeted in the ileum, cecum, and midcolon, suggesting that Lpf contributes to intestinal colonization. In contrast, the ΔlpfA1ΔlpfA2mutant showed increased adherence to colonic epithelial cellsin vitro. Transmission electron microscopy revealed curli-like structures on the surface of the ΔlpfA1ΔlpfA2mutant, and the presence of curli was confirmed by Congo red binding, immunogold-labeling electron microscopy, immunoblotting, and quantitative real-time reverse transcription-PCR (qRT-PCR) measuringcsgAexpression. However, deletion ofcsgA, which encodes the major curli subunit, does not appear to affect intestinal colonization. In addition to suggesting that Lpf can contribute to EHEC intestinal colonization, our observations indicate that the regulatory pathways governing the expression of Lpf and curli are interdependent.


2005 ◽  
Vol 187 (2) ◽  
pp. 458-472 ◽  
Author(s):  
Megan E. Porter ◽  
Paul Mitchell ◽  
Andrew Free ◽  
David G. E. Smith ◽  
David L. Gally

ABSTRACT The PerC protein of enteropathogenic Escherichia coli (EPEC), encoded by the pEAF plasmid, is an activator of the locus of enterocyte effacement (LEE) pathogenicity island via the LEE1 promoter. It has been assumed that the related LEE-containing pathogen enterohemorrhagic E. coli (EHEC) lacks PerC-dependent activation due to utilization of an alternative LEE1 promoter and lack of a perC gene. However, we show here that EPEC PerC can activate both the EPEC and EHEC LEE1 promoters and that the major transcriptional start site is similarly located in both organisms. Moreover, a PerC-like protein family identified from EHEC genome analyses, PerC1 (also termed PchABC), can also activate both promoters in a manner similar to that of EPEC PerC. The perC1 genes are carried by lambdoid prophages, which exist in multiple copies in different EHEC strains, and have a variable flanking region which may affect their expression. Although individual perC1 copies appear to be poorly expressed, the total perC1 expression level from a strain encoding multiple copies approaches that of perC in EPEC and may therefore contribute significantly to LEE1 activation. Alignment of the protein sequences of these PerC homologues allows core regions of the PerC protein to be identified, and we show by site-directed mutagenesis that these core regions are important for function. However, purified PerC protein shows no in vitro binding affinity for the LEE1 promoter, suggesting that other core E. coli proteins may be involved in its mechanism of activation. Our data indicate that the nucleoid-associated protein IHF is one such protein.


2009 ◽  
Vol 72 (7) ◽  
pp. 1531-1537 ◽  
Author(s):  
JUAN XICOHTENCATL-CORTES ◽  
ETHEL SÁNCHEZ CHACÓN ◽  
ZEUS SALDAÑA ◽  
ENRIQUE FREER ◽  
JORGE A. GIRÓN

Enterohemorrhagic Escherichia coli (EHEC) is a foodborne pathogen responsible for human diarrheal disease. EHEC lives in the intestinal tract of cattle and other farm and wild animals, which may be the source of environmental contamination particularly of agricultural fields. Human infections are associated with consumption of tainted animal products and fresh produce. How the bacteria interact with the plant phyllosphere and withstand industrial decontamination remain to be elucidated. The goals of the present study were to investigate the environmental conditions and surface structures that influence the interaction of EHEC O157:H7 with baby spinach and lettuce leaves in vitro. Independently of the production of Shiga toxin, EHEC O157:H7 colonizes the leaf surface via flagella and the type 3 secretion system (T3SS). Ultrastructural analysis of EHEC-infected leafy greens revealed the presence of flagellated bacteria, and mutation of the fliC flagellin gene in EHEC EDL933 rendered the bacteria significantly less adherent, suggesting the involvement of flagella in the bacteria-leaf interaction. EDL933 mutated in the escN (ATPase) gene associated with the function of the T3SS but not in the eae (intimin adhesin) gene required for adherence to host intestinal cells had significantly reduced adherence compared with that of the parental strain. The data suggest a compelling role of flagella and the T3SS in colonization of leafy green produce. Colonization of salad leaves by EHEC strains may be a strategy that ensures survival of these bacteria in the environment and allows transmission to the human host.


2001 ◽  
Vol 47 (1) ◽  
pp. 91-95 ◽  
Author(s):  
J Wayne Conlan ◽  
Sonia L Bardy ◽  
Rhonda KuoLee ◽  
Ann Webb ◽  
Malcolm B Perry

In an attempt to improve upon a current mouse model of intestinal colonization by Escherichia coli O157:H7 used in this laboratory for vaccine development, nine clinical isolates of the pathogen were screened for their ability to persist in the intestinal tract of conventional adult CD-1 mice. None of the test isolates of E. coli O157:H7 were capable of colonizing these mice for a period of more than two weeks. Most of the isolates appeared to be benign for the experimental host, but one isolate was lethal. This virulence correlated with the ability of the latter isolate to produce large quantities of Shiga-like toxin 2 in vitro.


Sign in / Sign up

Export Citation Format

Share Document