Polymorphonuclear Leukocytes Restrict Growth of Pseudomonas aeruginosa in the Lungs of Cystic Fibrosis Patients
ABSTRACTCystic fibrosis (CF) patients have increased susceptibility to chronic lung infections byPseudomonas aeruginosa, but the ecophysiology within the CF lung during infections is poorly understood. The aim of this study was to elucidate thein vivogrowth physiology ofP. aeruginosawithin lungs of chronically infected CF patients. A novel, quantitative peptide nucleic acid (PNA) fluorescencein situhybridization (PNA-FISH)-based method was used to estimate thein vivogrowth rates ofP. aeruginosadirectly in lung tissue samples from CF patients and the growth rates ofP. aeruginosain infected lungs in a mouse model. The growth rate ofP. aeruginosawithin CF lungs did not correlate with the dimensions of bacterial aggregates but showed an inverse correlation to the concentration of polymorphonuclear leukocytes (PMNs) surrounding the bacteria. A growth-limiting effect onP. aeruginosaby PMNs was also observedin vitro, where this limitation was alleviated in the presence of the alternative electron acceptor nitrate. The finding thatP. aeruginosagrowth patterns correlate with the number of surrounding PMNs points to a bacteriostatic effect by PMNs via their strong O2consumption, which slows the growth ofP. aeruginosain infected CF lungs. In support of this, the growth ofP. aeruginosawas significantly higher in the respiratory airways than in the conducting airways of mice. These results indicate a complex host-pathogen interaction in chronicP. aeruginosainfection of the CF lung whereby PMNs slow the growth of the bacteria and render them less susceptible to antibiotic treatment while enabling them to persist by anaerobic respiration.