scholarly journals Distinct Contributions of Interleukin-1α (IL-1α) and IL-1β to Innate Immune Recognition of Pseudomonas aeruginosa in the Lung

2014 ◽  
Vol 82 (10) ◽  
pp. 4204-4211 ◽  
Author(s):  
Khatoun Al Moussawi ◽  
Barbara I. Kazmierczak

ABSTRACTThe bacterial pathogenPseudomonas aeruginosacauses acute infections associated with significant morbidity and mortality.P. aeruginosaelicits strong innate immune responses in immunocompetent hosts, and the resulting recruitment of neutrophils to the site of infection is necessary for bacterial clearance.P. aeruginosalipopolysaccharide and flagellin are recognized by extracellular Toll-like receptors, but the most rapid responses to infection occur when cytosolic receptors sense flagellin or type 3 secretion system (T3SS) structural proteins. The subsequent activation of the NLRC4 inflammasome and caspase-1 generates an interleukin-1β (IL-1β) signal that is required for the rapid neutrophilic response. A T3SS effector, exotoxin U (ExoU), can inhibit activation of the NLRC4 inflammasome and caspase-1. Thus, our observation that IL-1 receptor (IL-1R)-mediated signals were still required to initiate a response to ExoU-producing bacteria was unexpected. As both IL-1α and IL-1β signal via the IL-1R, we examined immune responses in mice lacking either of these cytokines. IL-1β-deficient mice responded to ExoU-producingP. aeruginosabacteria similarly to wild-type animals; however, IL-1α-deficient mice had an attenuated immune response. The situation was reversed following infections by ExoU-negative bacteria: here, IL-1α was dispensable for neutrophil recruitment, while IL-1β was required. IL-1α secretion by macrophages infected with ExoU-producingP. aeruginosaisolates was independent of both caspase-1 and caspase-11. This study documents distinct roles for IL-1α and IL-1β in the response toP. aeruginosainfection as a function of the T3SS effectors produced by the infecting strain. The redundancy of these two cytokines nonetheless allows the infected host to mount a response to ExoU-positive and -negative bacterial isolates.

mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Fabien Cottier ◽  
Sarah Sherrington ◽  
Sarah Cockerill ◽  
Valentina del Olmo Toledo ◽  
Stephen Kissane ◽  
...  

ABSTRACT Candida albicans is a commensal yeast of the human gut which is tolerated by the immune system but has the potential to become an opportunistic pathogen. One way in which C. albicans achieves this duality is through concealing or exposing cell wall pathogen-associated molecular patterns (PAMPs) in response to host-derived environment cues (pH, hypoxia, and lactate). This cell wall remodeling allows C. albicans to evade or hyperactivate the host’s innate immune responses, leading to disease. Previously, we showed that adaptation of C. albicans to acidic environments, conditions encountered during colonization of the female reproductive tract, induces significant cell wall remodeling resulting in the exposure of two key fungal PAMPs (β-glucan and chitin). Here, we report that this pH-dependent cell wall remodeling is time dependent, with the initial change in pH driving cell wall unmasking, which is then remasked at later time points. Remasking of β-glucan was mediated via the cell density-dependent fungal quorum sensing molecule farnesol, while chitin remasking was mediated via a small, heat-stable, nonproteinaceous secreted molecule(s). Transcript profiling identified a core set of 42 genes significantly regulated by pH over time and identified the transcription factor Efg1 as a regulator of chitin exposure through regulation of CHT2. This dynamic cell wall remodeling influenced innate immune recognition of C. albicans, suggesting that during infection, C. albicans can manipulate the host innate immune responses. IMPORTANCE Candida albicans is part of the microbiota of the skin and gastrointestinal and reproductive tracts of humans and has coevolved with us for millennia. During that period, C. albicans has developed strategies to modulate the host’s innate immune responses, by regulating the exposure of key epitopes on the fungal cell surface. Here, we report that exposing C. albicans to an acidic environment, similar to the one of the stomach or vagina, increases the detection of the yeast by macrophages. However, this effect is transitory, as C. albicans is able to remask these epitopes (glucan and chitin). We found that glucan remasking is controlled by the production of farnesol, a molecule secreted by C. albicans in response to high cell densities. However, chitin-remasking mechanisms remain to be identified. By understanding the relationship between environmental sensing and modulation of the host-pathogen interaction, new opportunities for the development of innovative antifungal strategies are possible.


2007 ◽  
Vol 204 (13) ◽  
pp. 3235-3245 ◽  
Author(s):  
Fayyaz S. Sutterwala ◽  
Lilia A. Mijares ◽  
Li Li ◽  
Yasunori Ogura ◽  
Barbara I. Kazmierczak ◽  
...  

Pseudomonas aeruginosa is a Gram-negative bacterium that causes opportunistic infections in immunocompromised individuals. P. aeruginosa employs a type III secretion system to inject effector molecules into the cytoplasm of the host cell. This interaction with the host cell leads to inflammatory responses that eventually result in cell death. We show that infection of macrophages with P. aeruginosa results in activation of caspase-1 in an IPAF-dependent, but flagellin-independent, manner. Macrophages deficient in IPAF or caspase-1 were markedly resistant to P. aeruginosa–induced cell death and release of the proinflammatory cytokine interleukin (IL)-1β. A subset of P. aeruginosa isolates express the effector molecule exoenzyme U (ExoU), which we demonstrate is capable of inhibiting caspase-1–driven proinflammatory cytokine production. This study shows a key role for IPAF and capase-1 in innate immune responses to the pathogen P. aeruginosa, and also demonstrates that virulent ExoU-expressing strains of P. aeruginosa can circumvent this innate immune response.


2012 ◽  
Vol 81 (3) ◽  
pp. 723-732 ◽  
Author(s):  
Simon Clare ◽  
Victoria John ◽  
Alan W. Walker ◽  
Jennifer L. Hill ◽  
Cei Abreu-Goodger ◽  
...  

ABSTRACTMicroRNAs (miRNAs) are small noncoding molecules that control gene expression posttranscriptionally, with microRNA-155 (miR-155) one of the first to be implicated in immune regulation. Here, we show that miR-155-deficient mice are less able to eradicate a mucosalCitrobacter rodentiuminfection than wild-type C57BL/6 mice. miR-155-deficient mice exhibited prolonged colonization associated with a higherC. rodentiumburden in gastrointestinal tissue and spread into systemic tissues. Germinal center formation and humoral immune responses againstC. rodentiumwere severely impaired in infected miR-155-deficient mice. A similarly susceptible phenotype was observed in μMT mice reconstituted with miR-155-deficient B cells, indicating that miR-155 is required intrinsically for mediating protection against this predominantly luminal bacterial pathogen.


2005 ◽  
Vol 202 (8) ◽  
pp. 1043-1049 ◽  
Author(s):  
Sanjeev Mariathasan ◽  
David S. Weiss ◽  
Vishva M. Dixit ◽  
Denise M. Monack

Francisella tularensis is a highly infectious gram-negative coccobacillus that causes the zoonosis tularemia. This bacterial pathogen causes a plague-like disease in humans after exposure to as few as 10 cells. Many of the mechanisms by which the innate immune system fights Francisella are unknown. Here we show that wild-type Francisella, which reach the cytosol, but not Francisella mutants that remain localized to the vacuole, induced a host defense response in macrophages, which is dependent on caspase-1 and the death-fold containing adaptor protein ASC. Caspase-1 and ASC signaling resulted in host cell death and the release of the proinflammatory cytokines interleukin (IL)-1β and IL-18. F. tularensis–infected caspase-1– and ASC-deficient mice showed markedly increased bacterial burdens and mortality as compared with wild-type mice, demonstrating a key role for caspase-1 and ASC in innate defense against infection by this pathogen.


2013 ◽  
Vol 81 (12) ◽  
pp. 4431-4442 ◽  
Author(s):  
Alyssa Baccarella ◽  
Mary F. Fontana ◽  
Eunice C. Chen ◽  
Charles C. Kim

ABSTRACTInnate immune recognition of malaria parasites is the critical first step in the development of the host response. At present, Toll-like receptor 9 (TLR9) is thought to play a central role in sensing malaria infection. However, we and others have observed thatTlr9−/−mice, in contrast to mice deficient in the downstream adaptor, Myeloid differentiation primary response gene 88 (MYD88), exhibit few deficiencies in immune function during early infection with the malaria parasitePlasmodium chabaudi, implying that another MYD88-dependent receptor also contributes to the antimalarial response. Here we use candidate-based screening to identify TLR7 as a key sensor of earlyP. chabaudiinfection. We show that TLR7 mediates a rapid systemic response to infection through induction of cytokines such as type I interferons (IFN-I), interleukin 12, and gamma interferon. TLR7 is also required for induction of IFN-I by other species and strains ofPlasmodium, including an etiological agent of human disease,P. falciparum, suggesting that malaria parasites harbor a common pathogen-associated molecular pattern (PAMP) recognized by TLR7. In contrast to the nonredundant requirement for TLR7 in early immune activation, sensing through both TLR7 and TLR9 was required for proinflammatory cytokine production and immune cell activation during the peak of parasitemia. Our findings indicate that TLR7 plays a central role in early immune activation during malaria infection, whereas TLR7 and TLR9 contribute combinatorially to immune responses as infection progresses.


2021 ◽  
Author(s):  
Zhexian Liu ◽  
Sarzana S. Hossain ◽  
Zayda Morales Moreira ◽  
Cara H. Haney

Pseudomonas aeruginosa , an opportunistic bacterial pathogen can synthesize and catabolize a number of small cationic molecules known as polyamines. In several clades of bacteria polyamines regulate biofilm formation, a lifestyle-switching process that confers resistance to environmental stress. The polyamine putrescine and its biosynthetic precursors, L-arginine and agmatine, promote biofilm formation in Pseudomonas spp. However, it remains unclear whether the effect is a direct effect of polyamines or through a metabolic derivative. Here we used a genetic approach to demonstrate that putrescine accumulation, either through disruption of the spermidine biosynthesis pathway or the catabolic putrescine aminotransferase pathway, promoted biofilm formation in P. aeruginosa . Consistent with this observation, exogenous putrescine robustly induced biofilm formation in P. aeruginosa that was dependent on putrescine uptake and biosynthesis pathways. Additionally, we show that L-arginine, the biosynthetic precursor of putrescine, also promoted biofilm formation, but via a mechanism independent of putrescine or agmatine conversion. We found that both putrescine and L-arginine induced a significant increase in the intracellular level of bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) (c-di-GMP), a bacterial second messenger widely found in Proteobacteria that upregulates biofilm formation. Collectively these data show that putrescine and its metabolic precursor arginine promote biofilm and c-di-GMP synthesis in P. aeruginosa . Importance: Biofilm formation allows bacteria to physically attach to a surface, confers tolerance to antimicrobial agents, and promotes resistance to host immune responses. As a result, regulation of biofilm is often crucial for bacterial pathogens to establish chronic infections. A primary mechanism of biofilm promotion in bacteria is the molecule c-di-GMP, which promotes biofilm formation. The level of c-di-GMP is tightly regulated by bacterial enzymes. In this study, we found that putrescine, a small molecule ubiquitously found in eukaryotic cells, robustly enhances P. aeruginosa biofilm and c-di-GMP. We propose that P. aeruginosa may sense putrescine as a host-associated signal that triggers a lifestyle switching that favors chronic infection.


mSphere ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Ana A. Weil ◽  
Crystal N. Ellis ◽  
Meti D. Debela ◽  
Taufiqur R. Bhuiyan ◽  
Rasheduzzaman Rashu ◽  
...  

ABSTRACT Vibrio cholerae infection provides long-lasting protective immunity, while oral, inactivated cholera vaccines (OCV) result in more-limited protection. To identify characteristics of the innate immune response that may distinguish natural V. cholerae infection from OCV, we stimulated differentiated, macrophage-like THP-1 cells with live versus heat-inactivated V. cholerae with and without endogenous or exogenous cholera holotoxin (CT). Interleukin 23A gene (IL23A) expression was higher in cells exposed to live V. cholerae than in cells exposed to inactivated organisms (mean change, 38-fold; 95% confidence interval [95% CI], 4.0 to 42; P < 0.01). IL-23 secretion was also higher in cells exposed to live V. cholerae than in cells exposed to inactivated V. cholerae (mean change, 5.6-fold; 95% CI, 4.4 to 11; P < 0.001). This increase in IL-23 secretion was more marked than for other key innate immune cytokines (e.g., IL-1β and IL-6) and dependent on exposure to the combination of both live V. cholerae and CT. While IL-23 secretion was reduced following stimulation with either heat-inactivated wild-type V. cholerae or a live isogenic ctxAB mutant of V. cholerae, the addition of exogenous CT restored IL-23 secretion in combination with the live isogenic ctxAB mutant V. cholerae, but not when it was paired with stimulation by heat-inactivated V. cholerae. The posttranslational regulation of IL-23 under these conditions was dependent on the activity of the cysteine protease cathepsin B. In humans, IL-23 promotes the differentiation of Th17 cells to T follicular helper cells, which maintain and support long-term memory B cell generation after infection. Based on these findings, the stimulation of IL-23 production may be a determinant of protective immunity following V. cholerae infection. IMPORTANCE An episode of cholera provides better protection against reinfection than oral cholera vaccines, and the reasons for this are still under study. To better understand this, we compared the immune responses of human cells exposed to live Vibrio cholerae with those of cells exposed to heat-killed V. cholerae (similar to the contents of oral cholera vaccines). We also compared the effects of active cholera toxin and the inactive cholera toxin B subunit (which is included in some cholera vaccines). One key immune signaling molecule, IL-23, was uniquely produced in response to the combination of live bacteria and active cholera holotoxin. Stimulation with V. cholerae that did not produce the active toxin or was killed did not produce an IL-23 response. The stimulation of IL-23 production by cholera toxin-producing V. cholerae may be important in conferring long-term immunity after cholera.


Shock ◽  
2004 ◽  
Vol 21 (Supplement) ◽  
pp. 69
Author(s):  
T. L. Ness ◽  
K. J. Carpenter ◽  
J. L. Ewing ◽  
C. M. Hogaboam ◽  
S L Kunkel

Sign in / Sign up

Export Citation Format

Share Document