scholarly journals Cyclo(Phe-Pro) Produced by the Human Pathogen Vibrio vulnificus Inhibits Host Innate Immune Responses through the NF-κB Pathway

2015 ◽  
Vol 83 (3) ◽  
pp. 1150-1161 ◽  
Author(s):  
Kiwan Kim ◽  
Na-Jeong Kim ◽  
So Young Kim ◽  
In Hwang Kim ◽  
Kun-Soo Kim ◽  
...  

Cyclo(Phe-Pro) (cFP) is a secondary metabolite produced by certain bacteria and fungi. Although recent studies highlight the role of cFP in cell-to-cell communication by bacteria, its role in the context of the host immune response is poorly understood. In this study, we investigated the role of cFP produced by the human pathogenVibrio vulnificusin the modulation of innate immune responses toward the pathogen. cFP suppressed the production of proinflammatory cytokines, nitric oxide, and reactive oxygen species in a lipopolysaccharide (LPS)-stimulated monocyte/macrophage cell line and in bone marrow-derived macrophages. Specifically, cFP inhibited inhibitory κB (IκB) kinase (IKK) phosphorylation, IκBα degradation, and nuclear factor κB (NF-κB) translocation to the cell nucleus, indicating that cFP affects the NF-κB pathway. We searched for genes that are responsible for cFP production inV. vulnificusand identified VVMO6_03017 as a causative gene. A deletion of VVMO6_03017 diminished cFP production and decreased virulence in subcutaneously inoculated mice. In summary, cFP produced byV. vulnificusactively suppresses the innate immune responses of the host, thereby facilitating its survival and propagation in the host environment.

2012 ◽  
Vol 19 (3) ◽  
pp. 304-312 ◽  
Author(s):  
Zhiming Pan ◽  
Qiuxia Cong ◽  
Shizhong Geng ◽  
Qiang Fang ◽  
Xilong Kang ◽  
...  

ABSTRACTRecombinant attenuatedSalmonellavaccines have been extensively studied, with a focus on eliciting specific immune responses against foreign antigens. However, very little is known about the innate immune responses, particularly the role of flagellin, in the induction of innate immunity triggered by recombinant attenuatedSalmonellain chickens. In the present report, we describe twoSalmonella entericaserovar Typhimurium vaccine strains, wild-type (WT) or flagellin-deficient (flhD)Salmonella, both expressing the fusion protein (F) gene of Newcastle disease virus. We examined the bacterial load and spatiotemporal kinetics of expression of inflammatory cytokine, chemokine, and Toll-like receptor 5 (TLR5) genes in the cecum, spleen, liver, and heterophils following oral immunization of chickens with the twoSalmonellastrains. TheflhDmutant exhibited an enhanced ability to establish systemic infection compared to the WT. In contrast, the WT strain induced higher levels of interleukin-1β (IL-1β), CXCLi2, and TLR5 mRNAs in cecum, the spleen, and the heterophils than theflhDmutant at different times postinfection. Collectively, the present data reveal a fundamental role of flagellin in the innate immune responses induced by recombinant attenuatedSalmonellavaccines in chickens that should be considered for the rational design of novel vaccines for poultry.


2021 ◽  
Author(s):  
Fabrice Cognasse ◽  
Kathryn Hally ◽  
Sebastien Fauteux-Daniel ◽  
Marie-Ange Eyraud ◽  
Charles-Antoine Arthaud ◽  
...  

AbstractAside from their canonical role in hemostasis, it is increasingly recognized that platelets have inflammatory functions and can regulate both adaptive and innate immune responses. The main topic this review aims to cover is the proinflammatory effects and side effects of platelet transfusion. Platelets prepared for transfusion are subject to stress injury upon collection, preparation, and storage. With these types of stress, they undergo morphologic, metabolic, and functional modulations which are likely to induce platelet activation and the release of biological response modifiers (BRMs). As a consequence, platelet concentrates (PCs) accumulate BRMs during processing and storage, and these BRMs are ultimately transfused alongside platelets. It has been shown that BRMs present in PCs can induce immune responses and posttransfusion reactions in the transfusion recipient. Several recent reports within the transfusion literature have investigated the concept of platelets as immune cells. Nevertheless, current and future investigations will face the challenge of encompassing the immunological role of platelets in the scope of transfusion.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yaoyao Xia ◽  
Yikun Li ◽  
Xiaoyan Wu ◽  
Qingzhuo Zhang ◽  
Siyuan Chen ◽  
...  

Iron fine-tunes innate immune responses, including macrophage inflammation. In this review, we summarize the current understanding about the iron in dictating macrophage polarization. Mechanistically, iron orchestrates macrophage polarization through several aspects, including cellular signaling, cellular metabolism, and epigenetic regulation. Therefore, iron modulates the development and progression of multiple macrophage-associated diseases, such as cancer, atherosclerosis, and liver diseases. Collectively, this review highlights the crucial role of iron for macrophage polarization, and indicates the potential application of iron supplementation as an adjuvant therapy in different inflammatory disorders relative to the balance of macrophage polarization.


2020 ◽  
Author(s):  
Quentin Marquant ◽  
Daphné Laubreton ◽  
Carole Drajac ◽  
Elliot Mathieu ◽  
Edwige Bouguyon ◽  
...  

AbstractThe microbiota contributes to shaping efficient and safe immune defenses in the gut. However, little is known about the role of the microbiota in the education of pulmonary innate immune responses. Here, we tested whether the endogenous microbiota can modulate reactivity of pulmonary tissue to pathogen stimuli by comparing the response of specific pathogen-free (SPF) and germ-free (GF) mice. Using SPF and GF mice intranasally exposed to lipopolysaccharide (LPS), a component of Gram-negative bacteria, we observed earlier and greater inflammation in the pulmonary compartment of GF mice than that of SPF mice. Toll-like receptor 4 (TLR4) was more abundantly expressed in the lungs of GF mice than those of SPF mice at steady state, which could predispose the innate immunity of GF mice to strongly react to environmental stimuli. Lung explants were stimulated with different TLR agonists or infected with the human airways pathogen, respiratory syncytial virus (RSV), resulting in greater inflammation under almost all conditions for the GF explants. Finally, alveolar macrophages (AM) from GF mice presented a higher innate immune response upon RSV infection than those of SPF mice. Overall, these data suggest that the presence of microbiota in SPF mice induced a process of innate immune tolerance in the lungs by a mechanism which remains to be elucidated. Our study represents a step forward to establishing the link between the microbiota and the immune reactivity of the lungs.Plain Language summaryMicrobiota represents an important partner of immunologic system at the interface between immune cells and epithelium. It is well known, notably in the gut, that the microbiota contributes in shaping efficient and safe defenses. However, little is known about the role of the microbiota in the education of pulmonary innate immune responses. In this study, we postulate that endogenous microbiota could dampen an excessive reactivity of pulmonary tissue to external stimuli. Thus, we sought to study the innate immune reaction switched on by viral or bacterial ligands in respiratory tract cells coming from mice with or without microbiota (germ-free condition, GF). Altogether, our results show a higher inflammatory reaction in GF condition. This study represents a step forward to better establish the link between the microbiota and the reactivity of the lung tissue. Not only these data demonstrate that the microbiota educates the pulmonary innate immune system, but also contributes the emerging concept of using respiratory commensal bacteria as potential next-generation probiotics to prevent susceptibility to respiratory diseases.


2020 ◽  
Vol 11 ◽  
Author(s):  
Imran Ahmad ◽  
Araceli Valverde ◽  
Raza Ali Naqvi ◽  
Afsar R. Naqvi

Macrophages (Mφ) are immune cells that exhibit remarkable functional plasticity. Identification of novel endogenous factors that can regulate plasticity and innate immune functions of Mφ will unravel new strategies to curb immune-related diseases. Long non-coding RNAs (lncRNAs) are a class of endogenous, non-protein coding, regulatory RNAs that are increasingly being associated with various cellular functions and diseases. Despite their ubiquity and abundance, lncRNA-mediated epigenetic regulation of Mφ polarization and innate immune functions is poorly studied. This study elucidates the regulatory role of lncRNAs in monocyte to Mφ differentiation, M1/M2 dichotomy and innate immune responses. Expression profiling of eighty-eight lncRNAs in monocytes and in vitro differentiated M2 Mφ identified seventeen differentially expressed lncRNAs. Based on fold-change and significance, we selected four differentially expressed lncRNAs viz., RN7SK, GAS5, IPW, and ZFAS1 to evaluate their functional impact. LncRNA knockdown was performed on day 3 M2 Mφ and the impact on polarization was assessed on day 7 by surface marker analysis. Knockdown of RN7SK and GAS5 showed downregulation of M2 surface markers (CD163, CD206, or Dectin) and concomitant increase in M1 markers (MHC II or CD23). RN7SK or GAS5 knockdown showed no significant impact on CD163, CD206, or CD23 transcripts. M1/M2 markers were not impacted by IPW or ZFAS1 knockdown. Functional regulation of antigen uptake/processing and phagocytosis, two central innate immune pathways, by candidate lncRNA was assessed in M1/M2 Mφ. Compared to scramble, enhanced antigen uptake and processing were observed in both M1/M2 Mφ transfected with siRNA targeting GAS5 and RN7SK but not IPW and ZFAS1. In addition, knockdown of RN7SK significantly augmented uptake of labelled E. coli in vitro by M1/M2 Mφ, while no significant difference was in GAS5 silencing cells. Together, our results highlight the instrumental role of lncRNA (RN7SK and GAS5)-mediated epigenetic regulation of macrophage differentiation, polarization, and innate immune functions.


2019 ◽  
Vol 116 (50) ◽  
pp. 25106-25114 ◽  
Author(s):  
Wenqian Li ◽  
Jun Yan ◽  
Yan Yu

Receptors of innate immune cells function synergistically to detect pathogens and elicit appropriate immune responses. Many receptor pairs also appear “colocalized” on the membranes of phagosomes, the intracellular compartments for pathogen ingestion. However, the nature of the seemingly receptor colocalization and the role it plays in immune regulation are unclear, due to the inaccessibility of intracellular phagocytic receptors. Here, we report a geometric manipulation technique to directly probe the role of phagocytic receptor “colocalization” in innate immune regulation. Using particles with spatially patterned ligands as phagocytic targets, we can decouple the receptor pair, Dectin-1 and Toll-like receptor (TLR)2, to opposite sides on a single phagosome or bring them into nanoscale proximity without changing the overall membrane composition. We show that Dectin-1 enhances immune responses triggered predominantly by TLR2 when their centroid-to-centroid proximity is <500 nm, but this signaling synergy diminishes upon receptor segregation beyond this threshold distance. Our results demonstrate that nanoscale proximity, not necessarily colocalization, between Dectin-1 and TLR2 is required for their synergistic regulation of macrophage immune responses. This study elucidates the relationship between the spatial organization of phagocytic receptors and innate immune responses. It showcases a technique that allows spatial manipulation of receptors and their signal cross-talk on phagosomes inside living cells.


2012 ◽  
Vol 80 (12) ◽  
pp. 4417-4425 ◽  
Author(s):  
Xiaogang Wang ◽  
Philip R. Hardwidge

ABSTRACTThe NF-κB pathway regulates innate immune responses to infection. NF-κB is activated after pathogen-associated molecular patterns are detected, leading to the induction of proinflammatory host responses. As a countermeasure, bacterial pathogens have evolved mechanisms to subvert NF-κB signaling. EnterotoxigenicEscherichia coli(ETEC) causes diarrheal disease and significant morbidity and mortality for humans in developing nations. The extent to which this important pathogen subverts innate immune responses by directly targeting the NF-κB pathway is an understudied topic. Here we report that ETEC secretes a heat-stable, proteinaceous factor that blocks NF-κB signaling normally induced by tumor necrosis factor (TNF), interleukin-1β, and flagellin. Pretreating intestinal epithelial cells with ETEC supernatant significantly blocked the degradation of the NF-κB inhibitor IκBα without affecting IκBα phosphorylation. Data from immunoprecipitation experiments suggest that the ETEC factor functions by preventing IκBα polyubiquitination. Inhibiting clathrin function blocked the activity of the secreted ETEC factor, suggesting that this yet-uncharacterized activity may utilize clathrin-dependent endocytosis to enter host cells. These data suggest that ETEC evades the host innate immune response by directly modulating NF-κB signaling.


Sign in / Sign up

Export Citation Format

Share Document