scholarly journals Constitutive Expression of the Vi Polysaccharide Capsular Antigen in Attenuated Salmonella entericaSerovar Typhi Oral Vaccine Strain CVD 909

2000 ◽  
Vol 68 (8) ◽  
pp. 4647-4652 ◽  
Author(s):  
Jin Yuan Wang ◽  
Fernando R. Noriega ◽  
James E. Galen ◽  
Eileen Barry ◽  
Myron M. Levine

ABSTRACT Live oral Ty21a and parenteral Vi polysaccharide vaccines provide significant protection against typhoid fever, albeit by distinct immune mechanisms. Vi stimulates serum immunoglobulin G Vi antibodies, whereas Ty21a, which does not express Vi, elicits humoral and cell-mediated immune responses other than Vi antibodies. Protection may be enhanced if serum Vi antibody as well as cell-mediated and humoral responses can be stimulated. Disappointingly, several new attenuated Salmonella enterica serovar Typhi oral vaccines (e.g., CVD 908-htrA and Ty800) that elicit serum O and H antibody and cell-mediated responses following a single dose do not stimulate serum Vi antibody. Vi expression is regulated in response to environmental signals such as osmolarity by controlling the transcription oftviA in the viaB locus. To investigate if Vi antibodies can be stimulated if Vi expression is rendered constitutive, we replaced P tviA in serovar Typhi vaccine CVD 908-htrA with the constitutive promoter P tac , resulting in CVD 909. CVD 909 expresses Vi even under high-osmolarity conditions and is less invasive for Henle 407 cells. In mice immunized with a single intranasal dose, CVD 909 was more immunogenic than CVD 908-htrA in eliciting serum Vi antibodies (geometric mean titer of 160 versus 49, P = 0.0007), whereas O antibody responses were virtually identical (geometric mean titer of 87 versus 80). In mice challenged intraperitoneally with wild-type serovar Typhi 4 weeks after a single intranasal immunization, the mortality of those immunized with CVD 909 (3 of 8) was significantly lower than that of control mice (10 of 10,P = 0.043) or mice given CVD 908-htrA (9 of 10, P = 0.0065).

Author(s):  
Dami Collier ◽  
Isabella Ferreira ◽  
Rawlings Datir ◽  
Bo Meng ◽  
Laura Bergamaschi ◽  
...  

Background Vaccines remain the cornerstone for containing the SARS-CoV-2 pandemic. mRNA vaccines provide protection in clinical trials using a two-dose approach, separated by a three to four week gap. UK policy in 2021 is to extend the dosing interval from three to twelve weeks and other countries are likely to follow suit given the demand for mRNA vaccines and ongoing uncontrolled transmission. There is a paucity of data in the elderly, even though these individuals are the first to receive vaccines due to risk of severe disease. Here we assessed real world immune responses following vaccination with mRNA-based vaccine BNT162b2. Methods: We did a prospective cohort study of 101 individuals presenting for first dose vaccination, with a subset having the second dose. Following the first and second doses of the BNT162b2 vaccine, we measured binding antibody (IgA, IgG and IgG1-4) responses to Spike and Spike RBD, serum neutralising antibody responses to wild type (Wuhan-1 with D614G) and the B.1.1.7 Spike variant using a lentiviral pseudotyping system. We also analysed B cell repertoires and autoantibodies were measured. We measured spike specific IFNgamma; and IL-2 T cell responses and CMV serostatus. We correlated age with immune responses and compared responses after the first and second doses. Results Median age was 81 years amongst 101 participants after the first dose of the BNT162b2 vaccine. Geometric mean neutralisation titres in participants over 80 years old after the first dose were lower than in younger individuals [83.4 (95% CI 52.0-133.7) vs 46.6 (95% CI 33.5-64.8) p 0.01]. A lower proportion of participants 80 years and older achieved adequate neutralisation titre of >1:20 for 50% neutralisation as compared to those under 80 (21% vs 51%, p 0.003). Binding IgG responses correlated with neutralisation. Sera from participants in both age groups showed significantly lower neutralisation potency against B.1.1.7 Spike pseudotyped viruses as compared to wild type. The adjusted ORs for inadequate neutralisation in the 80 years and above age group were 3.7 (95% CI 1.2-11.2) and 4.4 (95% CI 1.5-12.6) against wild type and B.1.1.7 pseudotyped viruses. We observed a trend towards lower somatic hypermutation in participants with suboptimal neutralisation, and elderly participants demonstrated clear reduction in class switched somatic hypermutation, driven by the IgA1/2 isotype. SARS-CoV-2 Spike specific T- cell IFNgamma; and IL-2 responses were impaired in the older age group after 1 dose and although IFN𝛾 increased between vaccine doses, IL-2 responses did not significantly increase. Conclusions There was a significantly higher risk of suboptimal neutralising antibody and T cell response following first dose vaccination with BNT162b2 in half of participants above the age of 80, persisting up to 12 weeks. We caution against extending the dosing interval in this high risk population where B.1.1.7 and other variants of concern are circulating.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Ernesta Cavalcanti ◽  
Maria Antonietta Isgrò ◽  
Domenica Rea ◽  
Lucia Di Capua ◽  
Giusy Trillò ◽  
...  

Abstract Background Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection and the resulting disease, coronavirus disease 2019 (COVID-19), have spread to millions of people globally, requiring the development of billions of different vaccine doses. The SARS-CoV-2 spike mRNA vaccine (named BNT162b2/Pfizer), authorized by the FDA, has shown high efficacy in preventing SARS-CoV-2 infection after administration of two doses in individuals 16 years of age and older. In the present study, we retrospectively evaluated the differences in the SARS-CoV-2 humoral immune response after vaccine administration in the two different cohorts of workers at the INT - IRCCS “Fondazione Pascale” Cancer Center (Naples, Italy): previously infected to SARS-CoV-2 subjects and not infected to SARS-CoV-2 subjects. Methods We determined specific anti-RBD (receptor-binding domain) titers against trimeric spike glycoprotein (S) of SARS-CoV-2 by Roche Elecsys Anti-SARS-CoV-2 S immunoassay in serum samples of 35 healthcare workers with a previous documented history of SARS-CoV-2 infection and 158 healthcare workers without, after 1 and 2 doses of vaccine, respectively. Moreover, geometric mean titers and relative fold changes (FC) were calculated. Results Both previously infected and not infected to SARS-CoV-2 subjects developed significant immune responses to SARS-CoV-2 after the administration of 1 and 2 doses of vaccine, respectively. Anti-S antibody responses to the first dose of vaccine were significantly higher in previously SARS-CoV-2-infected subjects in comparison to titers of not infected subjects after the first as well as the second dose of vaccine. Fold changes for subjects previously infected to SARS-CoV-2 was very modest, given the high basal antibody titer, as well as the upper limit of 2500.0 BAU/mL imposed by the Roche methods. Conversely, for naïve subjects, mean fold change following the first dose was low ($$ \overline{x} $$ x ¯ =1.6), reaching 3.8 FC in 72 subjects (45.6%) following the second dose. Conclusions The results showed that, as early as the first dose, SARS-CoV-2-infected individuals developed a remarkable and statistically significant immune response in comparison to those who did not contract the virus previously, suggesting the possibility of administering only one dose in previously SARS-CoV-2-infected subjects. FC for previously infected subjects should not be taken into account for the generally high pre-vaccination values. Conversely, FC for not infected subjects, after the second dose, were = 3.8 in > 45.0% of vaccinees, and ≤ 3.1 in 19.0%, the latter showing a potential susceptibility to further SARS-CoV-2 infection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lynda Mottram ◽  
Anna Lundgren ◽  
Ann-Mari Svennerholm ◽  
Susannah Leach

Vaccines against enteric diseases could improve global health. Despite this, only a few oral vaccines are currently available for human use. One way to facilitate such vaccine development could be to identify a practical and relatively low cost biomarker assay to assess oral vaccine induced primary and memory IgA immune responses in humans. Such an IgA biomarker assay could complement antigen-specific immune response measurements, enabling more oral vaccine candidates to be tested, whilst also reducing the work and costs associated with early oral vaccine development. With this in mind, we take a holistic systems biology approach to compare the transcriptional signatures of peripheral blood mononuclear cells isolated from volunteers, who following two oral priming doses with the oral cholera vaccine Dukoral®, had either strong or no vaccine specific IgA responses. Using this bioinformatical method, we identify TNFRSF17, a gene encoding the B cell maturation antigen (BCMA), as a candidate biomarker of oral vaccine induced IgA immune responses. We then assess the ability of BCMA to reflect oral vaccine induced primary and memory IgA responses using an ELISA BCMA assay on a larger number of samples collected in clinical trials with Dukoral® and the oral enterotoxigenic Escherichia coli vaccine candidate ETVAX. We find significant correlations between levels of BCMA and vaccine antigen-specific IgA in antibodies in lymphocyte secretion (ALS) specimens, as well as with proportions of circulating plasmablasts detected by flow cytometry. Importantly, our results suggest that levels of BCMA detected early after primary mucosal vaccination may be a biomarker for induction of long-lived vaccine specific memory B cell responses, which are otherwise difficult to measure in clinical vaccine trials. In addition, we find that ALS-BCMA responses in individuals vaccinated with ETVAX plus the adjuvant double mutant heat-labile toxin (dmLT) are significantly higher than in subjects given ETVAX only. We therefore propose that as ALS-BCMA responses may reflect the total vaccine induced IgA responses to oral vaccination, this BCMA ELISA assay could also be used to estimate the total adjuvant effect on vaccine induced-antibody responses, independently of antigen specificity, further supporting the usefulness of the assay.


Author(s):  
Dami A. Collier ◽  
Anna De Marco ◽  
Isabella A.T.M. Ferreira ◽  
Bo Meng ◽  
Rawlings Datir ◽  
...  

AbstractSevere Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) transmission is uncontrolled in many parts of the world, compounded in some areas by higher transmission potential of the B1.1.7 variant now seen in 50 countries. It is unclear whether responses to SARS-CoV-2 vaccines based on the prototypic strain will be impacted by mutations found in B.1.1.7. Here we assessed immune responses following vaccination with mRNA-based vaccine BNT162b2. We measured neutralising antibody responses following a single immunization using pseudoviruses expressing the wild-type Spike protein or the 8 amino acid mutations found in the B.1.1.7 spike protein. The vaccine sera exhibited a broad range of neutralising titres against the wild-type pseudoviruses that were modestly reduced against B.1.1.7 variant. This reduction was also evident in sera from some convalescent patients. Decreased B.1.1.7 neutralisation was also observed with monoclonal antibodies targeting the N-terminal domain (9 out of 10), the Receptor Binding Motif (RBM) (5 out of 31), but not in neutralising mAbs binding outside the RBM. Introduction of the E484K mutation in a B.1.1.7 background to reflect newly emerging viruses in the UK led to a more substantial loss of neutralising activity by vaccine-elicited antibodies and mAbs (19 out of 31) over that conferred by the B.1.1.7 mutations alone. E484K emergence on a B.1.1.7 background represents a threat to the vaccine BNT162b.


Author(s):  
Soumya Rakshit ◽  
Sabuj Kumar Bhattacharya ◽  
Souvik Mallik ◽  
Partha Sarathi Mondal ◽  
Shibam Acharya ◽  
...  

Most of the infectious diseases due to pathogens are caused by the mucosal tract penetration. Hence, vaccines delivered directly to the mucosal tissues can defend pathogenic infections and provide protection at the first site of infection. Thus, mucosal, specifically, oral delivery is becoming the most ideal mode of vaccination. However, oral vaccines have to overcome numerous barriers such as the extremely low pH of the stomach, the presence of proteolytic enzymes and bile salts as well as low permeability in the intestine. Several formulations based on nanoparticles like liposomes, solid solutions, emulsions, VLPs are currently being used to prepare stable oral vaccine formulations. In current days different companies are trying to develop oral vaccine for COVID 19 also. This review briefly discusses several vaccine development criteria their mechanisms and various aspects of oral nanoparticles-based vaccine design that should be considered for improved mucosal and systemic immune responses.  Keywords: Vaccine development, nanoparticles, liposome, VLP, COVID 19, mucosal immunity.


2007 ◽  
Vol 75 (4) ◽  
pp. 1835-1842 ◽  
Author(s):  
Moataz Abd El Ghany ◽  
Angela Jansen ◽  
Simon Clare ◽  
Lindsay Hall ◽  
Derek Pickard ◽  
...  

ABSTRACT Environmental shedding of genetically manipulated microorganisms is an issue impeding the development of new live vaccines. We have investigated the immunogenicity of a number of novel Salmonella enterica serotype Typhimurium oral vaccine candidates that express the fragment C (TetC) component of tetanus toxin and harbor combinations of additional mutations in genes shdA, misL, and ratB that contribute to the persistence of serotype Typhimurium's colonization of the intestine. Serotype Typhimurium aroA (TetC) derivatives harboring additional mutations in either shdA or misL or combinations of these mutations exhibited a marked decrease in shedding of the vaccine strain in the feces of orally vaccinated mice. However, equivalent levels of anti-TetC and anti-Salmonella lipopolysaccharide immunoglobulin G (IgG), IgG1, IgG2a, and IgA were detected in sera of the vaccinated but not of the control mice. Cellular immune responses to TetC were detected in all vaccinated mice, regardless of the presence of the additional mutations in shdA or misL. Further, immunization with serotype Typhimurium aroA candidate vaccines harboring shdA and misL afforded complete protection against challenge with a virulent strain of serotype Typhimurium.


2017 ◽  
Vol 9 (6) ◽  
pp. 561-573 ◽  
Author(s):  
Kirsten J. Koymans ◽  
Oliver Goldmann ◽  
Christofer A.Q. Karlsson ◽  
Wiedjai Sital ◽  
Robert Thänert ◽  
...  

Toll-like receptor (TLR) signaling is important in the initiation of immune responses and subsequent instigation of adaptive immunity. TLR2 recognizes bacterial lipoproteins and plays a central role in the host defense against bacterial infections, including those caused by Staphylococcus aureus. Many studies have demonstrated the importance of TLR2 in murine S. aureus infection. S. aureus evades TLR2 activation by secreting two proteins, staphylococcal superantigen-like protein 3 (SSL3) and 4 (SSL4). In this study, we demonstrate that antibodies against SSL3 and SSL4 are found in healthy individuals, indicating that humans are exposed to these proteins during S. aureus colonization or infection. To investigate the TLR2-antagonistic properties of SSL3 and SSL4, we compared the infection with wild-type and SSL3/4 knockout S. aureus strains in an intravenous murine infection model. Direct evaluation of the contribution of SSL3/4 to infection pathogenesis was hindered by the fact that the SSLs were not expressed in the murine system. To circumvent this limitation, an SSL3-overproducing strain (pLukM-SSL3) was generated, resulting in constitutive expression of SSL3. pLukM-SSL3 exhibited increased virulence compared to the parental strain in a murine model that was found to be TLR2 dependent. Altogether, these data indicate that SSL3 contributes to S. aureus virulence in vivo.


2004 ◽  
Vol 11 (6) ◽  
pp. 1100-1104 ◽  
Author(s):  
Jo Southern ◽  
Sarah Deane ◽  
Lindsey Ashton ◽  
Ray Borrow ◽  
David Goldblatt ◽  
...  

ABSTRACT Extensive use of meningococcal AC polysaccharide (MACP) vaccines has raised concerns about induction of immunologic hyporesponsiveness to C polysaccharide. We investigated the immunogenicity and safety of a meningococcal C-tetanus conjugate (MCC-TT) vaccine in naïve adults and prior MACP vaccinees. Laboratory staff (n = 113) were recruited; 73 were naïve to meningococcal vaccination, and 40 had previously received ≥1 dose of MACP vaccine. Blood was taken prior to MCC-TT vaccination and 1 week, 1 month, and 6 months later. At each time point, proportions of subjects with serum bactericidal antibody (SBA) titers of ≥8 or ≥128 were similar (P > 0.46); >94% of subjects achieved titers of ≥128 at 1 month. However, the geometric mean titer (GMT) of SBA at 1 month was higher in the naïve (1,757; 95% confidence interval [95% CI], 1,102 to 2,803) than in the previously vaccinated (662; 95% CI, 363 to 1,207) group (P = 0.02), and similarly at 6 months (P < 0.001). Conversely, geometric mean concentrations (GMCs) of serogroup C-specific immunoglobulin G (IgG) were significantly higher in the previously vaccinated group pre-MCC-TT and at 1 week; the groups were similar at 1 month, and there was some evidence that the GMC for the previously vaccinated group was higher at 6 months. Qualitative differences in antibodies between groups were demonstrated by using the SBA/IgG ratio, though avidity measures were similar for the two groups throughout the study. MCC-TT was well tolerated, with similar safety profiles in the two groups. Pain in the arm and headache were the most frequently reported events following vaccination. The study shows that MCC-TT is safe and immunogenic in naïve and previously MACP-vaccinated adults, though the magnitude and persistence of postvaccination SBA responses in the latter group were lower.


2021 ◽  
Author(s):  
Ernesta Cavalcanti ◽  
Maria Antonietta Isgrò ◽  
Domenica Rea ◽  
Lucia Di Capua ◽  
Giusy Trillò ◽  
...  

Abstract Background: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection and the resulting disease, coronavirus disease 2019 (COVID-19), have spread to millions of people globally, requiring the development of billions of different vaccine doses. The SARS-CoV-2 spike mRNA vaccine (named BNT162b2/Pfizer), authorized by the FDA, has shown high efficacy in preventing SARS-CoV-2 infection after administration of two doses in individuals 16 years of age and older. In the present study, we retrospectively evaluated the differences in the SARS-CoV-2 humoral immune response after vaccine administration in the two different cohorts of workers at the INT - IRCCS “Fondazione Pascale” Cancer Center (Naples, Italy): previously exposed to SARS-CoV-2 subjects and not exposed to SARS-CoV-2 subjects.Methods: We determined specific anti-RBD (receptor-binding domain) titers against trimeric spike glycoprotein (S) of SARS-CoV-2 by Roche Elecsys Anti-SARS-CoV-2 S immunoassay in serum samples of 35 healthcare workers with a previous documented history of SARS-CoV-2 infection and 158 healthcare workers without, after 1 and 2 doses of vaccine, respectively. Moreover, geometric mean titers and relative fold changes (FC) were calculated.Results: Both previously exposed and not exposed to SARS-CoV-2 subjects developed significant immune responses to SARS-CoV-2 after the administration of 1 and 2 doses of vaccine, respectively. Anti-S antibody responses to the first dose of vaccine were significantly higher in previously SARS-CoV-2-exposed subjects in comparison to titers of not exposed subjects after the first as well as the second dose of vaccine. Fold changes for subjects previously exposed to SARS-CoV-2 was very modest, given the high basal antibody titer, as well as the upper limit of 2500.0 BAU/mL imposed by the Roche methods. Conversely, for naïve subjects, mean fold change following the first dose was low ( =1.6), reaching 3.8 FC in 72 subjects (45.6%) following the second dose.Conclusions: The results showed that, as early as the first dose, SARS-CoV-2-exposed individuals developed a remarkable and statistically significant immune response in comparison to those who did not contract the virus previously, suggesting the possibility of administering only one dose in previously SARS-CoV-2-exposed subjects. FC for previously exposed subjects should not be taken into account for the generally high pre-vaccination values. Conversely, FC for not exposed subjects, after the second dose, were = 3.8 in >45.0% of vaccinees, and ≤3.1 in 19.0%, the latter showing a potential susceptibility to further SARS-CoV-2 infection.


2004 ◽  
Vol 72 (2) ◽  
pp. 637-644 ◽  
Author(s):  
Ping Zhang ◽  
Michael Martin ◽  
Qiu-Bo Yang ◽  
Suzanne M. Michalek ◽  
Jannet Katz

ABSTRACT In addition to antigen-specific signals mediated through the T-cell receptor, T cells also require antigen nonspecific costimulation for activation. The B7 family of molecules on antigen-presenting cells, which include B7-1 (CD80) and B7-2 (CD86), play important roles in providing costimulatory signals required for development of antigen-specific immune responses. Hemagglutinin B (HagB) is a nonfimbrial adhesin of the periodontopathic microorganism Porphyromonas gingivalis and is thought to be involved in the attachment of the bacterium to host tissues. However, the immune mechanisms involved in responses to HagB and their roles in pathogenesis have yet to be elucidated. Therefore, the purpose of this study was to determine the role of B7 costimulatory molecules on T-helper-cell differentiation for the induction of immune responses to HagB. Mice deficient in either or both of the costimulatory molecules B7-1 and B7-2 were used to explore their role in immune responses to HagB after subcutaneous immunization. B7-1−/− mice had levels of immunoglobulin G (IgG) anti-HagB antibody activity in serum similar to those of wild-type mice, whereas lower serum IgG anti-HagB antibody responses were seen in B7-2−/− mice. Moreover, significantly lower numbers of IgG antibody-secreting cells and lower levels of CD4+-T-cell proliferation were observed in B7-2−/− mice compared to wild-type mice. No serum IgG response to HagB was detected in B7-1/B7-2−/− mice. Analysis of the subclass of the serum IgG responses and the cytokines induced in response to HagB revealed that B7-2−/− mice had significantly lower IgG1 and higher IgG2a anti-HagB antibody responses compared to wild-type mice. The B7-2−/− mice also had significantly reduced levels of interleukin-4 (IL-4) and IL-5 and enhanced level of gamma interferon. Furthermore, assessment of B7-1 and B7-2 expression on B cells and macrophages derived from wild-type BALB/c mice after in vitro stimulation with HagB revealed a predominant upregulation in the expression of the B7-2 costimulatory molecule on B cells and macrophages. Essentially no change was seen in the expression of B7-1. Taken together, these results suggest a critical role for B7, especially B7-2, for the preferential induction of a Th2-like response to HagB.


Sign in / Sign up

Export Citation Format

Share Document