scholarly journals T-Cell Responses to Immunodominant LACK Antigen Do Not Play a Critical Role in Determining Susceptibility of BALB/c Mice toLeishmania mexicana

2001 ◽  
Vol 69 (1) ◽  
pp. 617-621 ◽  
Author(s):  
Fabiola Aguilar Torrentera ◽  
Nicolas Glaichenhaus ◽  
Jon D. Laman ◽  
Yves Carlier

ABSTRACT Although BALB/c mice develop lesions when infected withLeishmania mexicana, the mechanisms which are responsible for susceptibility to this parasite have not been elucidated. In contrast, susceptibility of BALB/c mice to Leishmania majorhas been shown to depend on the early production of interleukin-4 (IL-4) by T cells which react to the parasitic LACK antigen. Here, we demonstrate that the lesions induced by L. mexicana are delayed compared to those induced by L. major but rapidly develop at later time points. Interestingly, while LACK-tolerant BALB/c-derived IE-LACK transgenic mice were resistant to L. major, they were susceptible to L. mexicana and developed lesions similar to those observed in wild-type BALB/c mice. The latter result was observed despite the fact that (i) LACK was expressed by L. mexicana, (ii) splenocytes from BALB/c mice were able to stimulate LACK-specific T-cell hybridoma cells when incubated with live L. mexicana promastigotes, and (iii) LACK-specific T cells contributed to IL-4 production in L. mexicana-infected BALB/c mice. Thus, in contrast to what was observed for L. major-infected mice, LACK-specific T cells do not play a critical role in determining susceptibility to L. mexicana. Although BALB/c mice are susceptible to both L. major and L. mexicana, the mechanisms which are responsible for susceptibility to these parasites are likely to be different.

Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 706
Author(s):  
Chunmei Fu ◽  
Li Zhou ◽  
Qing-Sheng Mi ◽  
Aimin Jiang

As the sentinels of the immune system, dendritic cells (DCs) play a critical role in initiating and regulating antigen-specific immune responses. Cross-priming, a process that DCs activate CD8 T cells by cross-presenting exogenous antigens onto their MHCI (Major Histocompatibility Complex class I), plays a critical role in mediating CD8 T cell immunity as well as tolerance. Current DC vaccines have remained largely unsuccessful despite their ability to potentiate both effector and memory CD8 T cell responses. There are two major hurdles for the success of DC-based vaccines: tumor-mediated immunosuppression and the functional limitation of the commonly used monocyte-derived dendritic cells (MoDCs). Due to their resistance to tumor-mediated suppression as inert vesicles, DC-derived exosomes (DCexos) have garnered much interest as cell-free therapeutic agents. However, current DCexo clinical trials have shown limited clinical benefits and failed to generate antigen-specific T cell responses. Another exciting development is the use of naturally circulating DCs instead of in vitro cultured DCs, as clinical trials with both human blood cDC2s (type 2 conventional DCs) and plasmacytoid DCs (pDCs) have shown promising results. pDC vaccines were particularly encouraging, especially in light of promising data from a recent clinical trial using a human pDC cell line, despite pDCs being considered tolerogenic and playing a suppressive role in tumors. However, how pDCs generate anti-tumor CD8 T cell immunity remains poorly understood, thus hindering their clinical advance. Using a pDC-targeted vaccine model, we have recently reported that while pDC-targeted vaccines led to strong cross-priming and durable CD8 T cell immunity, cross-presenting pDCs required cDCs to achieve cross-priming in vivo by transferring antigens to cDCs. Antigen transfer from pDCs to bystander cDCs was mediated by pDC-derived exosomes (pDCexos), which similarly required cDCs for cross-priming of antigen-specific CD8 T cells. pDCexos thus represent a new addition in our arsenal of DC-based cancer vaccines that would potentially combine the advantage of pDCs and DCexos.


1990 ◽  
Vol 172 (2) ◽  
pp. 439-446 ◽  
Author(s):  
A Bárcena ◽  
M L Toribio ◽  
L Pezzi ◽  
C Martínez

We have analyzed the effect of human recombinant interleukin 4 (rIL-4) on the growth and differentiation of human intrathymic pre-T cells (CD7+2+1-3-4-8-). We describe that this population of T cell precursors proliferates in response to rIL-4 (in the absence of mitogens or other stimulatory signals) in a dose-dependent way. The IL-4-induced proliferation is independent of the IL-2 pathway, as it cannot be inhibited with an anti-IL-2 receptor alpha chain antibody. In our culture conditions, rIL-4 also promotes the differentiation of pre-T cells into phenotypically mature T cells. Although both CD3/T cell receptor (TCR)-alpha/beta + and CD3-gamma/delta + T cells were obtained, the preferential differentiation into TCR-gamma/delta + cells was a consistent finding. These results suggest that, in addition to IL-2, IL-4 plays a critical role in promoting growth and differentiation of intrathymic T cell precursors at early stages of T cell development.


2003 ◽  
Vol 197 (3) ◽  
pp. 375-385 ◽  
Author(s):  
Hiroeki Sahara ◽  
Nilabh Shastri

CD4 T cells regulate immune responses that cause chronic graft rejection and graft versus host disease but their target antigens remain virtually unknown. We developed a new method to identify CD4 T cell–stimulating antigens. LacZ-inducible CD4 T cells were used as a probe to detect their cognate peptide/MHC II ligand generated in dendritic cells fed with Escherichia coli expressing a library of target cell genes. The murine H46 locus on chromosome 7 was thus found to encode the interleukin 4–induced IL4i1 gene. The IL4i1 precursor contains the HAFVEAIPELQGHV peptide which is presented by Ab major histocompatibility complex class II molecule via an endogenous pathway in professional antigen presenting cells. Both allelic peptides bind Ab and a single alanine to methionine substitution at p2 defines nonself. These results reveal novel features of H loci that regulate CD4 T cell responses as well as provide a general strategy for identifying elusive antigens that elicit CD4 T cell responses to tumors or self-tissues in autoimmunity.


2004 ◽  
Vol 24 (13) ◽  
pp. 6094-6103 ◽  
Author(s):  
Christine Brender ◽  
Ruth Columbus ◽  
Donald Metcalf ◽  
Emanuela Handman ◽  
Robyn Starr ◽  
...  

ABSTRACT Suppressors of cytokine signaling (SOCSs) are key regulators of cytokine-induced responses in hematopoietic as well as nonhematopoietic cells. SOCS1 and SOCS3 have been shown to modulate T-cell responses, whereas the roles of other SOCS family members in the regulation of lymphocyte function are less clear. Here, we report the generation of mice with a targeted disruption of the Socs5 gene. Socs5 −/− mice were born in a normal Mendelian ratio and were healthy and fertile. We found that SOCS5 is expressed in primary B and T cells in wild-type mice. However, no abnormalities in the lymphocyte compartment were seen in SOCS5-deficient mice. We examined antigen- and cytokine-induced proliferative responses in B and T cells in the absence of SOCS5 and found no deviations from the responses seen in wild-type cells. Because SOCS5 has been implicated in Th1 differentiation, we also investigated the importance of SOCS5 in T helper cell responses. Unexpectedly, SOCS5-deficient CD4 T cells showed no abnormalities in Th1/Th2 differentiation and Socs5 −/− mice showed normal resistance to infection with Leishmania major. Therefore, although SOCS5 is expressed in primary B and T cells, it appears to be dispensable for the regulation of lymphocyte function.


2003 ◽  
Vol 71 (3) ◽  
pp. 1083-1090 ◽  
Author(s):  
Hélène Saklani-Jusforgues ◽  
Elisabeth Fontan ◽  
Neirouz Soussi ◽  
Geneviève Milon ◽  
Pierre L. Goossens

ABSTRACT Listeria monocytogenes is considered as a potential live bacterial vector, particularly for the induction of CD8 T cells. The CD4 T-cell immune response triggered after enteral immunization of mice has not yet been thoroughly characterized. The dynamics of gamma interferon (IFN-γ)- and interleukin-4 (IL-4)-secreting CD4 T cells were analyzed after priming through intragastric delivery of an attenuated ΔactA recombinant L. monocytogenes strain expressing the Leishmania major LACK protein; a peptide of this protein, LACK158-173 peptide (pLACK), is a well-characterized CD4 T-cell target in BALB/c mice. Five compartments were monitored: Peyer's patches, mesenteric lymph nodes (MLN), spleen, liver, and blood. A single intragastric inoculation of ΔactA-LACK-LM in BALB/c mice led to colonization of the MLN and spleen at a significant level for at least 3 days. Efficient priming of IFN-γ-secreting pLACK-reactive CD4 T cells was observed in all tested compartments. Interestingly, IL-4-secreting pLACK-reactive CD4 T cells were detectable at day 6 or 7 only in blood and liver. The absence of translocation of viable bacteria through the intestinal epithelium after further ΔactA-LACK-LM inoculations was concomitant with the absence of an increase in the level of IFN-γ secreted by the MLN, blood, and splenic pLACK-reactive Th1 T cells, although the levels remained significantly above the basal level. No change in this population size was detected in the spleen. However, an increase in the number of intragastric inoculations had a clinical beneficial effect in L. major-infected BALB/c mice. L. monocytogenes thus presents the potential of an efficient vector for induction of CD4 T cells when administered by the enteral route.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 77-77
Author(s):  
Hong Xu ◽  
Jun Yan ◽  
Ziqiang Zhu ◽  
Yiming Huang ◽  
Yujie Wen ◽  
...  

Abstract Abstract 77 Adaptive immunity, especially T cells, has long been believed to be the dominant immune barrier in allogeneic transplantation. Targeting host T cells significantly reduces conditioning for bone marrow cell (BMC) engraftment. Innate immunity has been recently shown to pose a significant barrier in solid organ transplantation, but has not been addressed in bone marrow transplantation (BMT). Using T cell deficient (TCR-β/δ−/−) or T and B cell deficient (Rag−/−) mice, we found that allogeneic BMC rejection occurred early before the time required for T cell activation and was T- and B-cell independent, suggesting an effector role for innate immune cells in BMC rejection. Therefore, we hypothesized that by controlling both innate and adaptive immunity, the donor BMC would have a window of advantage to engraft. Survival of BMC in vivo was significantly improved by depleting recipient macrophages and/or NK cells, but not neutrophils. Moreover, depletion of macrophages and NK cells in combination with co-stimulatory blockade with anti-CD154 and rapamycin as a novel form of conditioning resulted in 100% allogeneic engraftment without any irradiation and T cell depletion. Donor chimerism remained stable and durable up to 6 months. Moreover, specific Vβ5½ and Vβ11 clonal deletion was detected in host CD4+ T cells in chimeras, indicating central tolerance to donor alloantigens. Whether and how the innate immune system recognizes or responds to allogeneic BMCs remains unknown. Toll-like receptors (TLRs) are a class of proteins that play a key role in the innate immune system. The signaling function of TLR depends on intracellular adaptors. The adaptor MyD88 transmits signals emanating from all TLR, except TLR3 while TRIF specifically mediates TLR3 and TLR4 signaling via type 1 IFN. To further determine the innate signaling pathways in allogeneic BMC rejection, B6 background (H2b) MyD88−/− and TRIF−/− mice were conditioned with anti-CD154/rapamycin plus 100 cGy total body irradiation and transplanted with 15 × 106 BALB/c (H2d) BMC. Only 33.3% of MyD88−/− recipients engrafted at 1 month, resembling outcomes for wild-type B6 mice. In contrast, 100% of TRIF−/− mice engrafted. The level of donor chimerism in TRIF−/− mice was 5.1 ± 0.6% at one month, significantly higher than in MyD88−/− and wild-type B6 controls (P < 0.005). To determine the mechanism of innate signaling in BMC rejection, we examined whether TRIF linked TLR3 or TLR4 is the key pattern recognition receptor involved in BMC recognition. To this end, TLR3−/− and TLR4−/− mice were transplanted with BALB/c BMC with same conditioning. None of the TLR3−/− mice engrafted. In contrast, engraftment was achieved in 100% of TLR4−/− mice up to 6 months follow up. Taken together, these results suggest that rejection of allogeneic BMC is uniquely dependent on the TLR4/TRIF signaling pathway. Thus, our results clearly demonstrate a previously unappreciated role for innate immunity in allogeneic BMC rejection. Our current findings are distinct from prior reports demonstrating a critical role of MyD88 in rejection of allogeneic skin grafts and lung, and may reflect unique features related to BMC. The findings of the role of innate immunity in BMC rejection would lead to revolutionary changes in our understanding and management of BMT. This would be informative in design of more specific innate immune targeted conditioning proposals in BMT to avoid the toxicity. Disclosures: Bozulic: Regenerex LLC: Employment. Ildstad:Regenerex LLC: Equity Ownership.


2020 ◽  
Vol 38 (5_suppl) ◽  
pp. 71-71
Author(s):  
Hildegund Ertl ◽  
Zhiquan Xiang ◽  
Yan Li ◽  
Andrew Luber ◽  
Colin Magowan ◽  
...  

71 Background: CD8+ T cells can inhibit tumor progression, but their induction is hampered by the low immunogenicity of most tumor antigens. HSV-1 glycoprotein D (gD), when genetically expressed as a fusion protein with tumor antigens, serves as a checkpoint inhibitor of the B and T cell attenuator (BTLA)-herpes virus entry mediator (HVEM) pathway, which acts early during T cell activation. HSV-1 gD thereby augments antigen-driven CD8+ T cell responses. We describe the immunogenicity and efficacy of a chimpanzee adenoviral vector (AdC) vaccine containing a detoxified E7/E6/E5(AdC-gDE765dt) sequence of HPV-16 fused into gD. Methods: The frequency of HPV-16 E7-specific CD8+ T-cells was assessed by tetramer staining in C57/Bl6 mice 14 days after a single IM vaccination with AdC vectors encoding wild-type or mutant HPV-16 oncoproteins expressed within gD, a non-HVEM-binding form of gD or without gD. Efficacy was tested in a TC-1 tumor cell challenge model with mice receiving no treatment or a single IM vaccine injection 3 days after tumor cell transplantation. Mice were followed for 80 days. Results: The addition of gD increases HPV-16 E7-specific CD8+ T-cell frequencies approximately 10-fold. T cell responses are similar to AdC vaccines expressing wild-type or mutant oncoproteins within gD. All AdC-gDE765dt treated mice show delayed tumor progression after a single vaccination with 50% of animals remaining tumor-free at study completion. Conclusions: These results show that the addition of gD, an early checkpoint inhibitor, which acts locally at the site of T cell stimulation, to an HPV-16 vaccine markedly improves the vaccine’s immunogenicity and efficacy. AdC-gDE765dt is currently in GMP manufacture for Phase 1 investigation in HPV-16 infected patients.


2008 ◽  
Vol 76 (8) ◽  
pp. 3628-3631 ◽  
Author(s):  
Sumana Chakravarty ◽  
G. Christian Baldeviano ◽  
Michael G. Overstreet ◽  
Fidel Zavala

ABSTRACT The protective immune response against liver stages of the malaria parasite critically requires CD8+ T cells. Although the nature of the effector mechanism utilized by these cells to repress parasite development remains unclear, a critical role for gamma interferon (IFN-γ) has been widely assumed based on circumstantial evidence. However, the requirement for CD8+ T-cell-mediated IFN-γ production in protective immunity to this pathogen has not been directly tested. In this report, we use an adoptive transfer strategy with circumsporozoite (CS) protein-specific transgenic T cells to examine the role of CD8+ T-cell-derived IFN-γ production in Plasmodium yoelii-infected mice. We show that despite a marginal reduction in the expansion of naive IFN-γ-deficient CS-specific transgenic T cells, their antiparasite activity remains intact. Further, adoptively transferred IFN-γ-deficient CD8+ T cells were as efficient as their wild-type counterparts in limiting parasite growth in naive mice. Taken together, these studies demonstrate that IFN-γ secretion by CS-specific CD8+ T cells is not essential to protect mice against live sporozoite challenge.


2014 ◽  
Vol 83 (1) ◽  
pp. 67-76 ◽  
Author(s):  
Steve Oghumu ◽  
James C. Stock ◽  
Sanjay Varikuti ◽  
Ran Dong ◽  
Cesar Terrazas ◽  
...  

Cutaneous leishmaniasis, caused mainly byLeishmania major, an obligate intracellular parasite, is a disfiguring disease characterized by large skin lesions and is transmitted by a sand fly vector. We previously showed that the chemokine receptor CXCR3 plays a critical role in mediating resistance to cutaneous leishmaniasis caused byLeishmania major. Furthermore, T cells fromL. major-susceptible BALB/c but notL. major-resistant C57BL/6 mice fail to efficiently upregulate CXCR3 upon activation. We therefore examined whether transgenic expression of CXCR3 on T cells would enhance resistance toL. majorinfection in susceptible BALB/c mice. We generated BALB/c and C57BL/6 transgenic mice, which constitutively overexpressed CXCR3 under a CD2 promoter, and then examined the outcomes withL. majorinfection. Contrary to our hypothesis, transgenic expression of CXCR3 (CXCR3Tg) on T cells of BALB/c mice resulted in increased lesion sizes and parasite burdens compared to wild-type (WT) littermates afterL. majorinfection. Restimulated lymph node cells fromL. major-infected BALB/c-CXCR3Tgmice produced more interleukin-4 (IL-4) and IL-10 and less gamma interferon (IFN-γ). Cells in draining lymph nodes from BALB/c-CXCR3Tgmice showed enhanced Th2 and reduced Th1 cell accumulation associated with increased neutrophils and inflammatory monocytes. However, monocytes displayed an immature phenotype which correlated with increased parasite burdens. Interestingly, transgenic expression of CXCR3 on T cells did not impact the outcome ofL. majorinfection in C57BL/6 mice, which mounted a predominantly Th1 response and spontaneously resolved their infection similar to WT littermates. Our findings demonstrate that transgenic expression of CXCR3 on T cells increases susceptibility of BALB/c mice toL. major.


1994 ◽  
Vol 179 (4) ◽  
pp. 1367-1371 ◽  
Author(s):  
Z E Wang ◽  
S L Reiner ◽  
S Zheng ◽  
D K Dalton ◽  
R M Locksley

Mice with homologous disruption of the interferon gamma (IFN-gamma) gene on the C57BL/6 background were infected with Leishmania major and the immune response assessed. In contrast to wild-type or heterozygous knockout mice, deficient animals were unable to restrict growth of the parasite and suffered lethal infection over 6-8 wk. Although wild-type and heterozygous littermates developed CD4+ cells that contained transcripts for IFN-gamma and lymphotoxin, typical of T helper type 1 (Th1) cells, the knockout mice developed CD4+ cells that contained transcripts for interleukin 4 (IL-4), IL-5, and IL-13, typical of Th2 cells. ELISPOT assays confirmed the reciprocal patterns of IFN-gamma or IL-4 production by T cells in similar frequencies in the respective groups of mice, and antibody analysis confirmed the presence of Th2-mediated isotype switching in the knockout mice. These data suggest that CD4+ T cells that normally respond to antigens by differentiation to Th1 cells default to the Th2 pathway in the absence of endogenous IFN-gamma.


Sign in / Sign up

Export Citation Format

Share Document