scholarly journals Changes in Availability of Oxygen Accentuate Differences in Capsular Polysaccharide Expression by Phenotypic Variants and Clinical Isolates of Streptococcus pneumoniae

2001 ◽  
Vol 69 (9) ◽  
pp. 5430-5439 ◽  
Author(s):  
Jeffrey N. Weiser ◽  
Deborah Bae ◽  
Henry Epino ◽  
Stephen B. Gordon ◽  
Miki Kapoor ◽  
...  

ABSTRACT Most isolates of Streptococcus pneumoniae are mixed populations of transparent (T) and opaque (O) colony phenotypes. Differences in the production of capsular polysaccharide (CPS) between O and T variants were accentuated by changes in the environmental concentration of oxygen. O variants demonstrated a 5.2- to 10.6-fold increase in amounts of CPS under anaerobic compared to atmospheric growth conditions, while CPS production remained low under all conditions for T variants. Increased amounts of CPS in O compared to T pneumococci were associated with increased expression ofcps-encoded proteins. The inhibitory effect of oxygen on expression of CPS in O variants correlated with decreased tyrosine phosphorylation of CpsD, a tyrosine kinase and regulator of CPS synthesis. Modulation of CpsD expression and its activity by tyrosine phosphorylation may allow the pneumococcus to adapt to the requirements of both colonization, where decreased CPS allows for adherence, and bacteremia, where increased CPS may be required to escape from opsonic clearance. In patients with invasive infection, paired isolates from the same patient were shown to have predominately a T colony phenotype without phosphotyrosine on CpsD when cultured from the nasopharynx, and an O phenotype that phosphorylates CpsD in response to oxygen when cultured from the blood. Differences in the availability of oxygen, therefore, may be a key factor in allowing for the selection of distinct phenotypes in these two host environments.

mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
M. Ammar Zafar ◽  
Alexandria J. Hammond ◽  
Shigeto Hamaguchi ◽  
Weisheng Wu ◽  
Masamitsu Kono ◽  
...  

ABSTRACTHost-to-host transmission is a necessary but poorly understood aspect of microbial pathogenesis. Herein, we screened a genomic library of mutants of the leading respiratory pathogenStreptococcus pneumoniaegenerated by mariner transposon mutagenesis (Tn-Seq) to identify genes contributing to its exit or shedding from the upper respiratory tract (URT), the limiting step in the organism’s transmission in an infant mouse model. Our analysis focused on genes affecting the bacterial surface that directly impact interactions with the host. Among the multiple factors identified was thedltlocus, which addsd-alanine onto lipoteichoic acids (LTA) and thereby increases Toll-like receptor 2-mediated inflammation and resistance to antimicrobial peptides. The more robust proinflammatory response in the presence ofd-alanylation promotes secretions that facilitate pneumococcal shedding and allows for transmission. Expression of thedltlocus is controlled by the CiaRH system, which senses cell wall stress in response to antimicrobial activity, including in response to lysozyme, the most abundant antimicrobial along the URT mucosa. Accordingly, in alysM−/−host, there was no longer an effect of thedltlocus on pneumococcal shedding. Thus, our findings demonstrate how a pathogen senses the URT milieu and then modifies its surface characteristics to take advantage of the host response for transit to another host.IMPORTANCEStreptococcus pneumoniae(the pneumococcus) is a common cause of respiratory tract and invasive infection. The overall effectiveness of immunization with the organism’s capsular polysaccharide depends on its ability to block colonization of the upper respiratory tract and thereby prevent host-to-host transmission. Because of the limited coverage of current pneumococcal vaccines, we carried out an unbiasedin vivotransposon mutagenesis screen to identify pneumococcal factors other than its capsular polysaccharide that affect transmission. One such candidate was expressed by thedltlocus, previously shown to addd-alanine onto the pneumococcal lipoteichoic acid present on the bacterial cell surface. This modification protects against host antimicrobials and augments host inflammatory responses. The latter increases secretions and bacterial shedding from the upper respiratory tract to allow for transmission. Thus, this study provides insight into a mechanism employed by the pneumococcus to successfully transit from one host to another.


2022 ◽  
Author(s):  
Hideki Sakatani ◽  
Masamitsu Kono ◽  
Denisa Nanushaj ◽  
Daichi Murakami ◽  
Saori Takeda ◽  
...  

We established an infant mouse model for colonization and transmission by nonencapsulated Streptococcus pneumoniae (NESp) strains to gain important information about its virulence among children. Invasive pneumococcal diseases have decreased dramatically since the worldwide introduction of pneumococcal capsular polysaccharide vaccines. Increasing prevalence of non-vaccine serotypes including NESp has been highlighted as a challenge in treatment strategy, but the virulence of NESp is not well understood. Protective strategy against NESp colonization and transmission between children require particularly urgent evaluation. NESp lacks capsules, a major virulent factor of pneumococci, but can cause a variety of infections in children and older people. PspK, a specific surface protein of NESp, is a key factor in establishing nasal colonization. In our infant mouse model for colonization and transmission by NESp strains, NESp could establish stable nasal colonization at the same level as encapsulated serotype 6A in infant mice, and could be transmitted between littermates. Transmission was promoted by NESp surface virulence factor PspK and influenza virus co-infection. However, PspK-deletion mutants lost the ability to colonize and transmit to new hosts. Promotion of NESp transmission by influenza was due to increased susceptibility of the new hosts. PspK was a key factor not only in establishment of nasal colonization, but also in transmission to new hosts. PspK may be targeted as a new candidate vaccine for NESp infection in children.


mSystems ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Yun-Dan Zheng ◽  
Ying Pan ◽  
Ke He ◽  
Nan Li ◽  
Donghong Yang ◽  
...  

ABSTRACT Streptococcus pneumoniae, a Gram-positive human pathogen, causes a series of serious diseases in humans. SPD_1495 from S. pneumoniae is annotated as a hypothetical ABC sugar-binding protein in the NCBI database, but there are few reports on detailed biological functions of SPD_1495. To fully study the influence of SPD_1495 on bacterial virulence in S. pneumoniae, we constructed a deletion mutant (D39Δspd1495) and an overexpressing strain (D39spd1495+). Comparative analysis of iTRAQ-based quantitative proteomic data of the wild-type D39 strain (D39-WT) and D39Δspd1495 showed that several differentially expressed proteins that participate in capsular polysaccharide synthesis, such as Cps2M, Cps2C, Cps2L, Cps2T, Cps2E, and Cps2D, were markedly upregulated in D39Δspd1495. Subsequent transmission electron microscopy and uronic acid detection assay confirmed that capsular polysaccharide synthesis was enhanced in D39Δspd1495 compared to that in D39-WT. Moreover, knockout of spd1495 resulted in increased capsular polysaccharide synthesis, as well as increased bacterial virulence, as confirmed by the animal study. Through a coimmunoprecipitation assay, surface plasmon resonance, and electrophoretic mobility shift assay, we found that SPD_1495 negatively regulated cps promoter expression by interacting with phosphorylated ComE, a negative transcriptional regulator for capsular polysaccharide formation. Overall, this study suggested that SPD_1495 negatively regulates capsular polysaccharide formation and thereby enhances bacterial virulence in the host. These findings also provide valuable insights into understanding the biology of this clinically important bacterium. IMPORTANCE Capsular polysaccharide is a key factor underlying the virulence of Streptococcus pneumoniae in human diseases. Thus, a deep understanding of capsular polysaccharide synthesis is essential for uncovering the pathogenesis of S. pneumoniae infection. In this study, we show that protein SPD_1495 interacts with phosphorylated ComE to negatively regulate the formation of capsular polysaccharide. Deletion of spd1495 increased capsular polysaccharide synthesis and thereby enhanced bacterial virulence. These findings further reveal the synthesis mechanism of capsular polysaccharide and provide new insight into the biology of this clinically important bacterium.


2003 ◽  
Vol 185 (20) ◽  
pp. 6057-6066 ◽  
Author(s):  
Matthew H. Bender ◽  
Robert T. Cartee ◽  
Janet Yother

ABSTRACT CpsA, CpsB, CpsC, and CpsD are part of a tyrosine phosphorylation regulatory system involved in modulation of capsule synthesis in Streptococcus pneumoniae and many other gram-positive and gram-negative bacteria. Using an immunoblotting technique, we observed distinct laddering patterns of S. pneumoniae capsular polysaccharides of various serotypes and found that transfer of the polymer from the membrane to the cell wall was independent of size. Deletion of cps2A, cps2B, cps2C, or cps2D in the serotype 2 strain D39 did not affect the ability to transfer capsule to the cell wall. Deletion of cps2C or cps2D, which encode two domains of an autophosphorylating tyrosine kinase, resulted in the production of only short-chain polymers. The function of Cps2A is unknown, and the polymer laddering pattern of the cps2A deletion mutants appeared similar to that of the parent, although the total amount of capsule was decreased. Loss of Cps2B, a tyrosine phosphatase and a kinase inhibitor, resulted in an increase in capsule amount and a normal ladder pattern. However, Cps2B mutants exhibited reduced virulence following intravenous inoculation of mice and were unable to colonize the nasopharynx, suggesting a diminished capacity to sense or respond to these environments. In D39 and its isogenic mutants, the amounts of capsule and tyrosine-phosphorylated Cps2D (Cps2D∼P) correlated directly. In contrast, restoration of type 2 capsule production followed by deletion of cps2B in Rx1, a laboratory passaged D39 derivative containing multiple uncharacterized mutations, resulted in decreased capsule amounts but no alteration in Cps2D∼P levels. Thus, a factor outside the capsule locus, which is either missing or defective in the Rx1 background, is important in the control of capsule synthesis.


1983 ◽  
Vol 49 (02) ◽  
pp. 096-101 ◽  
Author(s):  
V C Menys ◽  
J A Davies

SummaryPlatelet adhesion to rabbit aortic subendothelium or collagen-coated glass was quantitated in a rotating probe device by uptake of radio-labelled platelets. Under conditions in which aspirin had no effect, dazoxiben, a selective inhibitor of thromboxane synthetase, reduced platelet adhesion to aortic subendothelium by about 40% but did not affect adhesion to collagen-coated glass. Pre-treatment of aortic segments with 15-HPETE, a selective inhibitor of PGI2-synthetase, abolished the inhibitory effect of dazoxiben on adhesion. Concentrations of 6-oxo-PGFlα in the perfusate were raised in the presence of dazoxiben alone, and following addition of thrombin (10 units/ml) there was a 2-3 fold increase in concentration. Perfusion of damaged aorta with platelets labelled with (14C)-arachidonic acid in the presence of thrombin and dazoxiben resulted in the appearance of (14C)-labelled-6-oxo-PGFiα. Inhibition of thromboxane synthetase limits platelet adhesion probably by promoting vascular synthesis of PGI2 from endoperoxides liberated from adherent platelets, which subsequently promotes detachment of cells from the surface.


2021 ◽  
Vol 7 (6) ◽  
pp. 489
Author(s):  
Somanon Bhattacharya ◽  
Natalia Kronbauer Oliveira ◽  
Anne G. Savitt ◽  
Vanessa K. A. Silva ◽  
Rachel B. Krausert ◽  
...  

Chronic meningoencephalitis is caused by Cryptococcus neoformans and is treated in many parts of the world with fluconazole (FLC) monotherapy, which is associated with treatment failure and poor outcome. In the host, C. neoformans propagates predominantly under low glucose growth conditions. We investigated whether low glucose, mimicked by growing in synthetic media (SM) with 0.05% glucose (SMlowglu), affects FLC-resistance. A > 4-fold increase in FLC tolerance was observed in seven C. neoformans strains when minimum inhibitory concentration (MIC) was determined in SMlowglu compared to MIC in SM with normal (2%) glucose (SMnlglu). In SMlowglu, C. neoformans cells exhibited upregulation of efflux pump genes AFR1 (8.7-fold) and AFR2 (2.5-fold), as well as decreased accumulation (2.6-fold) of Nile Red, an efflux pump substrate. Elevated intracellular ATP levels (3.2-fold and 3.4-fold), as well as decreased mitochondrial reactive oxygen species levels (12.8-fold and 17-fold), were found in the presence and absence of FLC, indicating that low glucose altered mitochondrial function. Fluorescence microscopy revealed that mitochondria of C. neoformans grown in SMlowglu were fragmented, whereas normal glucose promoted a reticular network of mitochondria. Although mitochondrial membrane potential (MMP) was not markedly affected in SMlowglu, it significantly decreased in the presence of FLC (12.5-fold) in SMnlglu, but remained stable in SMlowglu-growing C. neoformans cells. Our data demonstrate that increased FLC tolerance in low glucose-growing C. neoformans is the result of increased efflux pump activities and altered mitochondrial function, which is more preserved in SMlowglu. This mechanism of resistance is different from FLC heteroresistance, which is associated with aneuploidy of chromosome 1 (Chr1).


Sign in / Sign up

Export Citation Format

Share Document