scholarly journals Role of Bcl-2 Family Members in Caspase-Independent Apoptosis during Chlamydia Infection

2002 ◽  
Vol 70 (1) ◽  
pp. 55-61 ◽  
Author(s):  
Jean-Luc Perfettini ◽  
John C. Reed ◽  
Nicole Israël ◽  
Jean-Claude Martinou ◽  
Alice Dautry-Varsat ◽  
...  

ABSTRACT Infection with an obligate intracellular bacterium, the Chlamydia trachomatis lymphogranuloma venereum (LGV/L2) strain or the guinea pig inclusion conjunctivitis serovar of Chlamydia psittaci, leads to apoptosis of host cells. The apoptosis is not affected by a broad-spectrum caspase inhibitor, and caspase-3 is not activated in infected cells, suggesting that apoptosis mediated by these two strains of Chlamydia is independent of known caspases. Overexpression of the proapoptotic Bcl-2 family member, Bax, was previously shown to induce caspase-independent apoptosis, and we find that Bax is activated and translocates from the cytosol to the mitochondria in C. psittaci-infected cells. C. psittaci-induced apoptosis is inhibited in host cells overexpressing Bax inhibitor-1 and is inhibited through overexpression of Bcl-2, which blocks both caspase-dependent and -independent apoptosis. As Bax and mitochondria are ideally located to sense stress-related metabolic changes emanating from the interior of an infected cell, it is likely that Bax-dependent apoptosis may also be observed in cells infected with other intracellular pathogens.

2019 ◽  
Vol 65 (2) ◽  
pp. 135-143 ◽  
Author(s):  
Junji Matsuo ◽  
Sanae Haga ◽  
Kent Hashimoto ◽  
Torahiko Okubo ◽  
Takeaki Ozawa ◽  
...  

The obligate intracellular bacterium Chlamydia trachomatis activates the host cell apoptosis pathway at a late stage of its developmental cycle. However, whether caspase-3, which is a key enzyme of apoptosis, is activated in Chlamydia-infected cells remains unknown. Here, we established HEp-2 cells stably expressing cFluc-DEVD, which is a caspase-3 substrate sequence inserted into cyclic firefly luciferase, and then monitored the dynamics of caspase-3 activity in cells infected with Chlamydia. Transfected cells without infection showed a significant increase in luciferase activity due to stimulation with staurosporine, an inducer of apoptosis. Activation was significantly blocked by addition of caspase inhibitor z-VAD-fmk. Furthermore, as expected, Chlamydia infection caused a significant increase in luciferase activation at 36–48 h postinfection with a contrastive decrease at 24 h postinfection, which is already well known. Such activation caused by the infection was much stronger when the amount of bacteria was increased. Thus, caspase-3 activation was accurately monitored by the luciferase activity in HEp-2 cells constitutively expressing the cFluc-DEVD probe. Furthermore, our data showed that C. trachomatis activates caspase-3 in host cells at a late stage of infection.


2019 ◽  
Author(s):  
Dhritiman Samanta ◽  
Tatiana M. Clemente ◽  
Stacey D. Gilk

AbstractUpon host cell infection, the obligate intracellular bacteriumC. burnetiiresides and multiplies within theCoxiella–ContainingVacuole (CCV). The nascent CCV progresses through the endosomal maturation pathway into a phagolysosome, acquiring lysosomal markers as well as acidic pH and active proteases and hydrolases. Approximately 24-48 hours post infection, heterotypic fusion between the CCV and host endosomes/lysosomes leads to CCV expansion and subsequent bacterial replication in the mature CCV. Initial CCV acidification is required to activateC. burnetiimetabolism and the Type 4B Secretion System (T4BSS), which secretes effector proteins required for CCV maturation. However, we recently found that the mature CCV is less acidic (pH~5.2) than lysosomes (pH~4.8). Further, CCV acidification to pH~4.8 causesC. burnetiilysis, suggestingC. burnetiiactively regulates CCV pH. Because heterotypic fusion with host endosomes/lysosomes may influence CCV pH, we investigated endosomal maturation in cells infected with wildtype (WT) or T4BSS mutant (ΔdotA)C. burnetii. We observed significantly fewer LAMP1-positive lysosomes, along with less acidic “mature” endosomes (pH~5.8), in WT-infected cells, compared to mock or ΔdotA-infected cells. Further, while endosomes progressively acidified from the periphery (pH~5.5) to the perinuclear area (pH~4.7) in both mock and ΔdotA-infected cells, endosomes did not acidify beyond pH~5.2 in WT-infected cells, indicating that theC. burnetiiT4BSS inhibits endosomal maturation. Finally, increasing the number of acidic lysosomes by overexpressing the transcription factor EB inhibitedC. burnetiigrowth, indicating lysosomes are detrimental toC. burnetii. Overall, our data suggest thatC. burnetiiregulates CCV pH, possibly by reducing the number of host lysosomes available for heterotypic fusion.Author summaryThe obligate intracellular bacteriumCoxiella burnetiicauses human Q fever, which manifests as a flu-like illness but can develop into a life-threatening and difficult to treat endocarditis.C. burnetii,in contrast to many other intracellular bacteria, thrives within a lysosome-like vacuole in host cells. However, we previously found that theC. burnetiivacuole is not as acidic as lysosomes and increased acidification kills the bacteria, suggesting thatC. burnetiiregulates the pH of its vacuole. Here, we discovered thatC. burnetiiblocks endosomal maturation and acidification during host cell infection, resulting in fewer lysosomes in the host cell. Moreover, increasing lysosomes in the host cells blockedC. burnetiigrowth. Together, our study suggests thatC. burnetiiregulates vacuole acidity and blocks endosomal acidification in order to produce a permissive intracellular niche.


1999 ◽  
Vol 73 (1) ◽  
pp. 702-708 ◽  
Author(s):  
Michael Bitzer ◽  
Florian Prinz ◽  
Manuel Bauer ◽  
Martin Spiegel ◽  
Wolfgang J. Neubert ◽  
...  

ABSTRACT Sendai virus (SV) infection and replication lead to a strong cytopathic effect with subsequent death of host cells. We now show that SV infection triggers an apoptotic program in target cells. Incubation of infected cells with the peptide inhibitor z-VAD-fmk abrogated SV-induced apoptosis, indicating that proteases of the caspase family were involved. Moreover, proteolytic activation of two distinct caspases, CPP32/caspase-3 and, as shown for the first time in virus-infected cells, FLICE/caspase-8, could be detected. So far, activation of FLICE/caspase-8 has been described in apoptosis triggered by death receptors, including CD95 and tumor necrosis factor (TNF)-R1. In contrast, we could show that SV-induced apoptosis did not require TNF or CD95 ligand. We further found that apoptosis of infected cells did not influence the maturation and budding of SV progeny. In conclusion, SV-induced cell injury is mediated by CD95- and TNF-R1-independent activation of caspases, leading to the death of host cells without impairment of the viral life cycle.


2004 ◽  
Vol 11 (5) ◽  
pp. 963-968 ◽  
Author(s):  
Diana G. Scorpio ◽  
Mustafa Akkoyunlu ◽  
Erol Fikrig ◽  
J. Stephen Dumler

ABSTRACT Anaplasma phagocytophilum is an obligate intracellular bacterium that infects neutrophils and causes human granulocytic anaplasmosis. Infection induces neutrophil secretion of interleukin-8 or murine homologs and perpetuates infection by recruiting susceptible neutrophils. We hypothesized that antibody blockade of CXCR2 would decrease A. phagocytophilum tissue load by interrupting neutrophil recruitment but would not influence murine hepatic pathology. C3H-scid mice were treated with CXCR2 antiserum or control prior to or on day 14 after infection. Quantitative PCR and immunohistochemistry for A. phagocytophilum were performed and severity of liver histopathology was ranked. Control mice had more infected cells in tissues than the anti-CXCR2-treated group. The histopathological rank was not different between treated and control animals. Infected cells of control mice clustered in tissue more than in treated mice. The results support the hypothesis of bacterial propagation through chemokine induction and confirm that tissue injury is unrelated to A. phagocytophilum tissue load.


2008 ◽  
Vol 89 (8) ◽  
pp. 1873-1880 ◽  
Author(s):  
Qian Yu ◽  
Tiehao Lin ◽  
Guozhong Feng ◽  
Kai Yang ◽  
Yi Pang

A homology search of a public database revealed that Spodoptera litura nucleopolyhedrovirus (SpltNPV) possesses two putative, antiapoptotic genes, p49 and inhibitor of apoptosis 4 (iap4), but their function has not been investigated in its native host cells. In the present study, we used RNA interference (RNAi) to silence the expression of Splt-iap4 and Splt-p49, independently or together, to determine their roles during the SpltNPV life cycle. RT-PCR analysis and Western blot analysis showed the target gene expression had been knocked out in the SpltNPV-infected SpLi-221 cells after treatment with Splt-p49 or Splt-iap4 double-stranded RNA (dsRNA), respectively, confirming that the two genes were effectively silenced. In SpltNPV-infected cells treated with Splt-p49 dsRNA, apoptosis was observed beginning at 14 h, and almost all cells had undergone apoptosis by 48 h. In contrast, budded virus production and polyhedra formation progressed normally in infected cells treated with Splt-iap4 dsRNA. Cell viability analysis showed that Splt-IAP4 had no synergistic effect on the inhibition of apoptosis of SpLi-221 cells induced by SpltNPV infection. Interestingly, after Splt-iap4 dsRNA treatment, cells did not congregate like those infected with SpltNPV in the early infection phase, implying an unknown role of baculovirus iap4. Our results determine that Splt-p49 is necessary to prevent apoptosis; however, Splt-iap4 has no antiapoptotic function during SpltNPV infection.


2013 ◽  
Vol 36 (3) ◽  
pp. 1033-1039 ◽  
Author(s):  
Abdullah H. Al-Assaf ◽  
Ali M. Alqahtani ◽  
Ali A. Alshatwi ◽  
Naveed A. Syed ◽  
Gowhar Shafi ◽  
...  

2020 ◽  
Author(s):  
Christoph C. Carter ◽  
Jean Paul Olivier ◽  
Alexis Kaushansky ◽  
Fred D. Mast ◽  
John D. Aitchison

ABSTRACTThe mechanistic target of rapamycin (mTOR) functions in at least two distinct complexes: mTORC1, which regulates cellular anabolic-catabolic homeostasis, and mTORC2, which is an important regulator of cell survival and cytoskeletal maintenance. mTORC1 has been implicated in the pathogenesis of flaviviruses including dengue, where it contributes to the establishment of a pro-viral autophagic state. In contrast, the role of mTORC2 in viral pathogenesis is unknown. In this study, we explore the consequences of a physical protein-protein interaction between dengue non-structural protein 5 (NS5) and host cell mTOR proteins during infection. Using shRNA to differentially target mTORC1 and mTORC2 complexes, we show that mTORC2 is required for optimal dengue replication. Furthermore, we show that mTORC2 is activated during viral replication, and that mTORC2 counteracts virus-induced apoptosis, promoting the survival of infected cells. This work reveals a novel mechanism by which the dengue flavivirus can promote cell survival to maximize viral replication.


1980 ◽  
Vol 30 (3) ◽  
pp. 874-883
Author(s):  
James W. Moulder ◽  
Nancy J. Levy ◽  
Laura P. Schulman

When monolayers of mouse fibroblasts (L cells) were infected with enough Chlamydia psittaci (strain 6BC) to destroy most of the host cells, 1 in every 10 5 to 10 6 originally infected cells gave rise to a colony of L cells persistently infected with strain 6BC. In these populations, the density of L cells and 6BC fluctuated periodically and reciprocally as periods of host cell increase were followed by periods of parasite multiplication. Successive cycles of L-cell and 6BC reproduction were sustained indefinitely by periodic transfer to fresh medium. Isolation of L cells and 6BC from persistent infections provided no evidence that there had been any selection of variants better suited for coexistence. Persistently infected populations consisting mainly of inclusion-free L cells yielded only persistently infected clones, grew more slowly, and cloned less efficiently. They were also almost completely resistant to superinfection with high multiplicities of either 6BC or the lymphogranuloma venereum strain 440L of Chlamydia trachomatis . These properties of persistently infected L cells may be accounted for by assuming that all of the individuals in these populations are cryptically infected with 6BC and that cryptic infection slows the growth of the host cell and makes it immune to infection with exogenous chlamydiae. According to this hypothesis, the fluctuations in host and parasite density occur because some factor periodically sets off the conversion of cryptic chlamydial forms into reticulate bodies that multiply and differentiate into infectious elementary bodies in a conventional chlamydial developmental cycle.


Biomolecules ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 260 ◽  
Author(s):  
Xinling Wang ◽  
Chengmin Li ◽  
Yiru Wang ◽  
Lian Li ◽  
Zhaoyu Han ◽  
...  

Ubiquitin-like modifier 1 ligating enzyme 1 (UFL1) is an E3 ligase of ubiquitin fold modifier 1 (UFM1), which can act together with its target protein to inhibit the apoptosis of cells. Lipopolysaccharides (LPS) can affect the ovarian health of female animals by affecting the apoptosis of ovarian granulosa cells. The physiological function of UFL1 on the apoptosis of bovine (ovarian) granulosa cells (bGCs) remains unclear; therefore, we focused on the modulating effect of UFL1 on the regulation of LPS-induced apoptosis in ovarian granulosa cells. Our study found that UFL1 was expressed in both the nucleus and cytoplasm of bGCs. The results here demonstrated that LPS caused a significant increase in the apoptosis level of bGCs in cows, and also dramatically increased the expression of UFL1. Furthermore, we found that UFL1 depletion caused a significant increase in apoptosis (increased the expression of BAX/BCL-2 and the activity of caspase-3). Conversely, the overexpression of UFL1 relieved the LPS-induced apoptosis. In order to assess whether the inhibition of bGCs apoptosis involved in the nuclear factor-κB (NF-κB) signaling pathway resulted from UFL1, we detected the expression of NF-κB p-p65. LPS treatment resulted in a significant upregulation in the protein concentration of NF-κB p-p65, and knockdown of UFL1 further increased the phosphorylation of NF-κB p65, while UFL1 overexpression significantly inhibited the expression of NF-κB p-p65. Collectively, UFL1 could suppress LPS-induced apoptosis in cow ovarian granulosa cells, likely via the NF-κB pathway. These results identify a novel role of UFL1 in the modulation of bGC apoptosis, which may be a potential signaling target to improve the reproductive health of dairy cows.


Sign in / Sign up

Export Citation Format

Share Document