scholarly journals The Fine Specificity, but Not the Invasion Inhibitory Activity, of 19-Kilodalton Merozoite Surface Protein 1-Specific Antibodies Is Associated with Resistance to Malarial Parasitemia in a Cross-Sectional Survey in The Gambia

2004 ◽  
Vol 72 (10) ◽  
pp. 6185-6189 ◽  
Author(s):  
Patrick H. Corran ◽  
Rebecca A. O'Donnell ◽  
Jim Todd ◽  
Chairat Uthaipibull ◽  
Anthony A. Holder ◽  
...  

ABSTRACT In a cross-sectional survey of 187 Gambian children and adults, we have analyzed prevalence, fine specificity, and 19-kilodalton merozoite surface protein 1 (MSP-119)-specific erythrocyte invasion inhibitory activity of antibodies to MSP-119 but find no significant association between any of these parameters and prevalence or density of malarial parasitemia, except that, after correcting for total anti-MSP-119 antibody levels, individuals with anti-MSP-119 antibodies that compete with an invasion inhibitory monoclonal antibody (12.10) were significantly less likely to have malaria infections with densities of ≥1,000 parasites/μl than were individuals without such antibodies. This association persisted after correction for age and ethnic origin.

1997 ◽  
Vol 186 (10) ◽  
pp. 1689-1699 ◽  
Author(s):  
José A. Guevara Patiño ◽  
Anthony A. Holder ◽  
Jana S. McBride ◽  
Michael J. Blackman

Merozoite surface protein–1 (MSP-1) of the human malaria parasite Plasmodium falciparum undergoes at least two endoproteolytic cleavage events during merozoite maturation and release, and erythrocyte invasion. We have previously demonstrated that mAbs which inhibit erythrocyte invasion and are specific for epitopes within a membrane-proximal, COOH-terminal domain of MSP-1 (MSP-119) prevent the critical secondary processing step which occurs on the surface of the extracellular merozoite at around the time of erythrocyte invasion. Certain other anti–MSP-119 mAbs, which themselves inhibit neither erythrocyte invasion nor MSP-1 secondary processing, block the processing-inhibitory activity of the first group of antibodies and are termed blocking antibodies. We have now directly quantitated antibody-mediated inhibition of MSP-1 secondary processing and invasion, and the effects on this of blocking antibodies. We show that blocking antibodies function by competing with the binding of processing-inhibitory antibodies to their epitopes on the merozoite. Polyclonal rabbit antibodies specific for certain MSP-1 sequences outside of MSP-119 also act as blocking antibodies. Most significantly, affinity-purified, naturally acquired human antibodies specific for epitopes within the NH2-terminal 83-kD domain of MSP-1 very effectively block the processing-inhibitory activity of the anti-MSP-119 mAb 12.8. The presence of these blocking antibodies also completely abrogates the inhibitory effect of mAb 12.8 on erythrocyte invasion by the parasite in vitro. Blocking antibodies therefore (a) are part of the human response to malarial infection; (b) can be induced by MSP-1 structures unrelated to the MSP-119 target of processing-inhibitory antibodies; and (c) have the potential to abolish protection mediated by anti–MSP-119 antibodies. Our results suggest that an effective MSP-119–based falciparum malaria vaccine should aim to induce an antibody response that prevents MSP-1 processing on the merozoite surface.


Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 282
Author(s):  
Elizabeth Villasis ◽  
Katherine Garro ◽  
Angel Rosas-Aguirre ◽  
Pamela Rodriguez ◽  
Jason Rosado ◽  
...  

The measurement of recent malaria exposure can support malaria control efforts. This study evaluated serological responses to an in-house Plasmodium vivax Merozoite Surface Protein 8 (PvMSP8) expressed in a Baculovirus system as sero-marker of recent exposure to P. vivax (Pv) in the Peruvian Amazon. In a first evaluation, IgGs against PvMSP8 and PvMSP10 proteins were measured by Luminex in a cohort of 422 Amazonian individuals with known history of Pv exposure (monthly data of infection status by qPCR and/or microscopy over five months). Both serological responses were able to discriminate between exposed and non-exposed individuals in a good manner, with slightly higher performance of anti-PvMSP10 IgGs (area under the curve AUC = 0.78 [95% CI = 0.72–0.83]) than anti-PvMSP8 IgGs (AUC = 0.72 [95% CI = 0.67–0.78]) (p = 0.01). In a second evaluation, the analysis by ELISA of 1251 plasma samples, collected during a population-based cross-sectional survey, confirmed the good performance of anti-PvMSP8 IgGs for discriminating between individuals with Pv infection at the time of survey and/or with antecedent of Pv in the past month (AUC = 0.79 [95% CI = 0.74–0.83]). Anti-PvMSP8 IgG antibodies can be considered as a good biomarker of recent Pv exposure in low-moderate transmission settings of the Peruvian Amazon.


2021 ◽  
Author(s):  
Sadudee Chotirat ◽  
Narimane Nekkab ◽  
Chalermpon Kumpitak ◽  
Jenni Hietanen ◽  
Michael T White ◽  
...  

AbstractThailand is aiming for malaria elimination by the year 2030. However, the high proportion of asymptomatic infections and the presence of the hidden hypnozoite stage of Plasmodium vivax are impeding these efforts. We hypothesized that a validated surveillance tool utilizing serological markers of recent exposure to P. vivax infection could help to identify areas of ongoing transmission. The objective of this exploratory study was to assess the ability of P. vivax serological exposure markers to detect residual transmission ‘hot-spots’ in Western Thailand. Total IgG levels were measured against a panel of 23 candidate P. vivax serological exposure markers using a multiplexed bead-based assay. A total of 4255 plasma samples from a cross-sectional survey conducted in 2012 of endemic areas in the Kanchanaburi and Ratchaburi provinces were assayed. We compared IgG levels with multiple epidemiological factors that are associated with an increased risk of P. vivax infection in Thailand, including age, gender and spatial location, as well as Plasmodium infection status itself. IgG levels to all proteins were significantly higher in the presence of a P. vivax infection (n=144) (t test, p<0.0001). Overall seropositivity rates varied from 2.5% (PVX_097625, merozoite surface protein 8) to 16.8% (PVX_082670, merozoite surface protein 7), with 43% of individuals seropositive to at least 1 protein. Higher IgG levels were associated with older age (>18 years, p<0.05) and males (17/23 proteins, p<0.05), supporting the paradigm that men have a higher risk of infection than females in this setting. We used a Random Forests algorithm to predict which individuals had exposure to P. vivax parasites in the last 9-months, based on their IgG antibody levels to a panel of 8 previously validated P. vivax proteins. Spatial clustering was observed at the village and regional level, with a moderate correlation between PCR prevalence and sero-prevalence as predicted by the algorithm. Our data provides proof-of-concept for application of such surrogate markers as evidence of recent exposure in low transmission areas. These data can be used to better identify geographical areas with asymptomatic infection burdens that can be targeted in elimination campaigns.


2003 ◽  
Vol 278 (48) ◽  
pp. 47670-47677 ◽  
Author(s):  
Suzanne L. Fleck ◽  
Berry Birdsall ◽  
Jeffrey Babon ◽  
Anton R. Dluzewski ◽  
Stephen R. Martin ◽  
...  

2004 ◽  
Vol 72 (5) ◽  
pp. 2762-2771 ◽  
Author(s):  
Armead H. Johnson ◽  
Rose G. F. Leke ◽  
Nancy R. Mendell ◽  
Dewon Shon ◽  
Young Ju Suh ◽  
...  

ABSTRACT The apical membrane antigen 1 (AMA1), merozoite surface antigen 2 (MSA2), and merozoite surface protein 1 (MSP1) are asexual-stage proteins currently being evaluated for inclusion in a vaccine for Plasmodium falciparum. Accordingly, it is important to understand factors that control antibody responses to these antigens. Antibody levels in plasma from residents of Etoa, Cameroon, between the ages of 5 and 70 years, were determined using recombinant AMA1, MSA2, and the N-terminal region of MSP1 (MSP1-190L). In addition, antibody responses to four variants of the C-terminal region of MSP1 (MSP119) were assessed. Results showed that all individuals produced antibodies to AMA1, MSA2, and MSP1-190L; however, a proportion of individuals never produced antibodies to the MSP119 variants, although the percentage of nonresponders decreased with age. The influence of age and human leukocyte antigen (HLA)-DRB1/DQB1 alleles on antibody levels was evaluated using two-way analysis of variance. Age was correlated with levels of antibodies to AMA1 and MSP119 but not with levels of antibodies to MSA2 and MSP1-190L. No association was found between a single HLA allele and levels of antibodies to MSA2, MSP1-190L, or any of the MSP119 variants. However, individuals positive for DRB1*1201 had higher levels of antibodies to the variant of recombinant AMA1 tested than did individuals of all other HLA types. Since the effect was seen across all age groups, HLA influenced the level but not the rate of antibody acquisition. This association for AMA1, combined with the previously reported association between HLA class II alleles and levels of antibodies to rhoptry-associated protein 1 (RAP1) and RAP2, indicates that HLA influences the levels of antibodies to three of the five vaccine candidate antigens that we have evaluated.


2009 ◽  
Vol 77 (12) ◽  
pp. 5659-5667 ◽  
Author(s):  
Maria Lazarou ◽  
José A. Guevara Patiño ◽  
Richard M. Jennings ◽  
Richard S. McIntosh ◽  
Jianguo Shi ◽  
...  

ABSTRACT Antigen-specific antibodies (Abs) to the 19-kDa carboxy-terminal region of Plasmodium falciparum merozoite surface protein 1 (MSP119) play an important role in protective immunity to malaria. Mouse monoclonal Abs (MAbs) 12.10 and 12.8 recognizing MSP119 can inhibit red cell invasion by interfering with MSP1 processing on the merozoite surface. We show here that this ability is dependent on the intact Ab since Fab and F(ab′)2 fragments derived from MAb 12.10, although capable of binding MSP1 with high affinity and competing with the intact antibody for binding to MSP1, were unable to inhibit erythrocyte invasion or MSP1 processing. The DNA sequences of the variable (V) regions of both MAbs 12.8 and 12.10 were obtained, and partial amino acid sequences of the same regions were confirmed by mass spectrometry. Human chimeric Abs constructed by using these sequences, which combine the original mouse V regions with human γ1 and γ3 constant regions, retain the ability to bind to both parasites and recombinant MSP119, and both chimeric human immunoglobulin G1s (IgG1s) were at least as good at inhibiting erythrocyte invasion as the parental murine MAbs 12.8 and 12.10. Furthermore, the human chimeric Abs of the IgG1 class (but not the corresponding human IgG3), induced significant NADPH-mediated oxidative bursts and degranulation from human neutrophils. These chimeric human Abs will enable investigators to examine the role of human Fcγ receptors in immunity to malaria using a transgenic parasite and mouse model and may prove useful in humans for neutralizing parasites as an adjunct to antimalarial drug therapy.


2004 ◽  
Vol 72 (3) ◽  
pp. 1603-1607 ◽  
Author(s):  
Diane Wallace Taylor ◽  
Aniong Zhou ◽  
Lauren E. Marsillio ◽  
Lucy W. Thuita ◽  
Efua B. Leke ◽  
...  

ABSTRACT Plasmodium falciparum-infected erythrocytes often sequester in the placenta of pregnant women, producing placental malaria, a condition that can compromise the health of the developing fetus. Scientists are hopeful that a vaccine can be developed to prevent this condition. Immunological mechanisms responsible for eliminating parasites from the placenta remain unclear, but antibodies to the carboxyl-terminal 19-kDa segment of the merozoite surface protein 1 (MSP1-19), the ring-infected erythrocyte surface antigen (RESA), and an erythrocyte-surface ligand that binds chondroitin sulfate A (CSA-L) have been implicated. In addition, antibodies to sporozoite and liver-stage antigens could reduce initial parasite burdens. This study sought to determine if antibodies to the circumsporozoite protein (CSP), liver-stage antigen 1 (LSA1), RESA, MSP1-19, or CSA-L correlated with either the absence of placental parasites or low placental parasitemias. Using a frequency-matched case-control study design, we compared antibody levels in women (gravidity 1 to 11) with and without placental malaria. Results showed that women who were antibody negative for MSP1-19 were at a higher risk of having placental malaria than women with antibodies (P < 0.007). Furthermore, an association between high levels of antibodies that blocked the binding of infected erythrocytes to CSA and low placental parasitemias was observed (P = 0.02). On the other hand, women with high antibody levels at term to CSP, LSA1, and RESA were more likely to have placental malaria than antibody-negative women. Since antibodies to MSP1-19 and CSA-L were associated with reduced placental malaria, both antigens show promise for inclusion in a vaccine for women of child-bearing age.


2006 ◽  
Vol 13 (7) ◽  
pp. 810-813 ◽  
Author(s):  
Kézia K. G. Scopel ◽  
Cor J. F. Fontes ◽  
Marcelo U. Ferreira ◽  
Érika M. Braga

ABSTRACT We investigated immunoglobulin G (IgG) subclass antibody responses to Plasmodium falciparum merozoite surface protein 1 (MSP-1) and MSP-2 in 112 malaria-exposed subjects in Brazil. IgG3 polarization was primarily epitope driven, being little affected by cumulative or current exposure to malaria and not affected by a subject's age and Fcγ receptor IIA genotype.


2007 ◽  
Vol 14 (4) ◽  
pp. 342-347 ◽  
Author(s):  
Pimmada Jeamwattanalert ◽  
Yuvadee Mahakunkijcharoen ◽  
Leera Kittigul ◽  
Pakpimol Mahannop ◽  
Sathit Pichyangkul ◽  
...  

ABSTRACT Merozoite surface protein 1 (MSP1) is the major protein on the surface of the plasmodial merozoite, and its carboxy terminus, the 19-kDa fragment (MSP119), is highly conserved and effective in induction of a protective immune response against malaria parasite infection in mice and monkeys. However, the duration of the immune response has not been elucidated. As such, we immunized BALB/c mice with a standard four-dose injection of recombinant Plasmodium yoelii MSP119 formulated with Montanide ISA51 and CpG oligodeoxynucleotide (ODN) and monitored the MSP119-specific antibody levels for up to 12 months. The antibody titers persisted constantly over the period of time without significant waning, in contrast to the antibody levels induced by immunization with Freund's adjuvant, where the antibody levels gradually declined to significantly lower levels 12 months after immunization. Investigation of immunoglobulin G (IgG) subclass longevity revealed that only the IgG1 antibody level (Th2 type-driven response) decreased significantly by 6 months, while the IgG2a antibody level (Th1 type-driven response) did not change over the 12 months after immunization, but the boosting effect was seen in the IgG1 antibody responses but not in the IgG2a antibody responses. After challenge infection, all immunized mice survived with negligibly patent parasitemia. These findings suggest that protective immune responses to MSP119 following immunization using oil-based Montanide ISA51 and CpG ODN as an adjuvant are very long-lasting and encourage clinical trials for malaria vaccine development.


Sign in / Sign up

Export Citation Format

Share Document