scholarly journals Interaction of Cryptosporidium hominis and Cryptosporidium parvum with Primary Human and Bovine Intestinal Cells

2006 ◽  
Vol 74 (1) ◽  
pp. 99-107 ◽  
Author(s):  
Amna Hashim ◽  
Grace Mulcahy ◽  
Billy Bourke ◽  
Marguerite Clyne

ABSTRACT Cryptosporidiosis in humans is caused by the zoonotic pathogen Cryptosporidium parvum and the anthroponotic pathogen Cryptosporidium hominis. To what extent the recently recognized C. hominis species differs from C. parvum is unknown. In this study we compared the mechanisms of C. parvum and C. hominis invasion using a primary cell model of infection. Cultured primary bovine and human epithelial intestinal cells were infected with C. parvum or C. hominis. The effects of the carbohydrate lectin galactose-N-acetylgalactosamine (Gal/GalNAc) and inhibitors of cytoskeletal function and signal transduction mechanisms on entry of the parasites into host cells were tested. HCT-8 cells (human ileocecal adenocarcinoma cells) were used for the purpose of comparison. Pretreatment of parasites with Gal/GalNAc inhibited entry of C. parvum into HCT-8 cells and primary bovine cells but had no effect on entry of either C. parvum or C. hominis into primary human cells or on entry of C. hominis into HCT-8 cells. Both Cryptosporidium species entered primary cells by a protein kinase C (PKC)- and actin-dependent mechanism. Staurosporine, in particular, attenuated infection, likely through a combination of PKC inhibition and induction of apoptosis. Diversity in the mechanisms used by Cryptosporidium species to infect cells of different origins has important implications for understanding the relevance of in vitro studies of Cryptosporidium pathogenesis.

2006 ◽  
Vol 73 (3) ◽  
pp. 947-955 ◽  
Author(s):  
B. H. Al-Adhami ◽  
R. A. B. Nichols ◽  
J. R. Kusel ◽  
J. O'Grady ◽  
H. V. Smith

ABSTRACT To investigate the effect of UV light on Cryptosporidium parvum and Cryptosporidium hominis oocysts in vitro, we exposed intact oocysts to 4-, 10-, 20-, and 40-mJ�cm−2 doses of UV irradiation. Thymine dimers were detected by immunofluorescence microscopy using a monoclonal antibody against cyclobutyl thymine dimers (anti-TDmAb). Dimer-specific fluorescence within sporozoite nuclei was confirmed by colocalization with the nuclear fluorogen 4′,6′-diamidino-2-phenylindole (DAPI). Oocyst walls were visualized using either commercial fluorescein isothiocyanate-labeled anti-Cryptosporidium oocyst antibodies (FITC-CmAb) or Texas Red-labeled anti-Cryptosporidium oocyst antibodies (TR-CmAb). The use of FITC-CmAb interfered with TD detection at doses below 40 mJ�cm−2. With the combination of anti-TDmAb, TR-CmAb, and DAPI, dimer-specific fluorescence was detected in sporozoite nuclei within oocysts exposed to 10 to 40 mJ�cm−2 of UV light. Similar results were obtained with C. hominis. C. parvum oocysts exposed to 10 to 40 mJ�cm−2 of UV light failed to infect neonatal mice, confirming that results of our anti-TD immunofluorescence assay paralleled the outcomes of our neonatal mouse infectivity assay. These results suggest that our immunofluorescence assay is suitable for detecting DNA damage in C. parvum and C. hominis oocysts induced following exposure to UV light.


Genes ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 760 ◽  
Author(s):  
Radhakrishnan Vishnubalaji ◽  
Hibah Shaath ◽  
Nehad M. Alajez

The global spread of COVID-19, caused by pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) underscores the need for an imminent response from medical research communities to better understand this rapidly spreading infection. Employing multiple bioinformatics and computational pipelines on transcriptome data from primary normal human bronchial epithelial cells (NHBE) during SARS-CoV-2 infection revealed activation of several mechanistic networks, including those involved in immunoglobulin G (IgG) and interferon lambda (IFNL) in host cells. Induction of acute inflammatory response and activation of tumor necrosis factor (TNF) was prominent in SARS-CoV-2 infected NHBE cells. Additionally, disease and functional analysis employing ingenuity pathway analysis (IPA) revealed activation of functional categories related to cell death, while those associated with viral infection and replication were suppressed. Several interferon (IFN) responsive gene targets (IRF9, IFIT1, IFIT2, IFIT3, IFITM1, MX1, OAS2, OAS3, IFI44 and IFI44L) were highly upregulated in SARS-CoV-2 infected NBHE cell, implying activation of antiviral IFN innate response. Gene ontology and functional annotation of differently expressed genes in patient lung tissues with COVID-19 revealed activation of antiviral response as the hallmark. Mechanistic network analysis in IPA identified 14 common activated, and 9 common suppressed networks in patient tissue, as well as in the NHBE cell model, suggesting a plausible role for these upstream regulator networks in the pathogenesis of COVID-19. Our data revealed expression of several viral proteins in vitro and in patient-derived tissue, while several host-derived long noncoding RNAs (lncRNAs) were identified. Our data highlights activation of IFN response as the main hallmark associated with SARS-CoV-2 infection in vitro and in human, and identified several differentially expressed lncRNAs during the course of infection, which could serve as disease biomarkers, while their precise role in the host response to SARS-CoV-2 remains to be investigated.


Foods ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 348 ◽  
Author(s):  
Erinn M. Quinn ◽  
Helen Slattery ◽  
Dan Walsh ◽  
Lokesh Joshi ◽  
Rita M. Hickey

Bifidobacteria are known to inhibit, compete with and displace the adhesion of pathogens to human intestinal cells. Previously, we demonstrated that goat milk oligosaccharides (GMO) increased the attachment of Bifidobacterium longum subsp. infantis ATCC 15697 to intestinal cells in vitro. In this study, we aimed to exploit this effect as a mechanism for inhibiting pathogen association with intestinal cells. We examined the synergistic effect of GMO-treated B. infantis on preventing the attachment of a highly invasive strain of Campylobacter jejuni to intestinal HT-29 cells. The combination decreased the adherence of C. jejuni to the HT-29 cells by an average of 42% compared to the control (non-GMO treated B. infantis). Increasing the incubation time of the GMO with the Bifidobacterium strain resulted in the strain metabolizing the GMO, correlating with a subsequent 104% increase in growth over a 24 h period when compared to the control. Metabolite analysis in the 24 h period also revealed increased production of acetate, lactate, formate and ethanol by GMO-treated B. infantis. Statistically significant changes in the GMO profile were also demonstrated over the 24 h period, indicating that the strain was digesting certain structures within the pool such as lactose, lacto-N-neotetraose, lacto-N-neohexaose 3′-sialyllactose, 6′-sialyllactose, sialyllacto-N-neotetraose c and disialyllactose. It may be that early exposure to GMO modulates the adhesion of B. infantis while carbohydrate utilisation becomes more important after the bacteria have transiently colonised the host cells in adequate numbers. This study builds a strong case for the use of synbiotics that incorporate oligosaccharides sourced from goat′s milk and probiotic bifidobacteria in functional foods, particularly considering the growing popularity of formulas based on goat milk.


2009 ◽  
Vol 8 (4) ◽  
pp. 470-477 ◽  
Author(s):  
Jane W. Wanyiri ◽  
Patsharaporn Techasintana ◽  
Roberta M. O'Connor ◽  
Michael J. Blackman ◽  
Kami Kim ◽  
...  

ABSTRACTThe apicomplexan parasiteCryptosporidiumis a significant cause of diarrheal disease worldwide. Previously, we reported that aCryptosporidium parvumsubtilisin-like serine protease activity with furin-type specificity cleaves gp40/15, a glycoprotein that is proteolytically processed into gp40 and gp15, which are implicated in mediating infection of host cells. Neither the enzyme(s) responsible for the protease activity inC. parvumlysates nor those that process gp40/15 are known. There are no furin or other proprotein convertase genes in theC. parvumgenome. However, a gene encoding CpSUB1, a subtilisin-like serine protease, is present. In this study, we cloned the CpSUB1 genomic sequence and expressed and purified the recombinant prodomain. Reverse transcriptase PCR analysis of RNA fromC. parvum-infected HCT-8 cells revealed that CpSUB1 is expressed throughout infection in vitro. In immunoblots, antiserum to the recombinant CpSUB1 prodomain revealed two major bands, of ∼64 kDa and ∼48 kDa, forC. parvumlysates and proteins “shed” during excystation. In immunofluorescence assays, the antiserum reacted with the apical region of sporozoites and merozoites. The recombinant prodomain inhibited protease activity and processing of recombinant gp40/15 byC. parvumlysates but not by furin. Since prodomains are often selective inhibitors of their cognate enzymes, these results suggest that CpSUB1 may be a likely candidate for the protease activity inC. parvumand for processing of gp40/15. Importantly, the recombinant prodomain inhibitedC. parvuminfection of HCT-8 cells. These studies indicate that CpSUB1 plays a significant role in infection of host cells by the parasite and suggest that this enzyme may serve as a target for intervention.


2021 ◽  
Author(s):  
Shalini Saxena ◽  
Kranti Meher ◽  
Madhuri Rotella ◽  
Subhramanyam Vangala ◽  
Satish Chandran ◽  
...  

Since 2019 the world has seen severe onslaught of SARS-CoV-2 viral pandemic. There is an urgent need for drugs that can be used to either prevent or treat the potentially fatal disease COVD-19. To this end, we screened FDA approved antiviral drugs which could be repurposed for COVID-19 through molecular docking approach in the various active sites of receptor binding domain (RBD). The RBD domain of SARS-CoV-2 spike protein is a promising drug target due to its pivotal role in viral-host attachment. Specifically, we focussed on identifying antiviral drugs which could a) block the entry of virus into host cells, b) demonstrate anti-inflammatory and/or anti-thrombogenic properties. Drugs which poses both properties could be useful for prevention and treatment of the disease. While we prioritized a few antiviral drugs based on molecular docking, corroboration with in vitro studies including a new 3D human vascular lung model strongly supported the potential of Homoharringtonine, a drug approved for chronic myeloid leukaemia to be repurposed for COVID-19. This natural product drug not only antagonized the biding of SARS-CoV-2 spike protein RBD binding to human angiotensin receptor 2 (ACE-2) protein but also demonstrated for the first time anti-thrombogenic and anti-leukocyte adhesive properties in a human cell model system. Overall, this work provides an important lead for development of rapid treatment of COVID-19 and also establishes a screening paradigm using molecular modelling and 3D human vascular lung model of disease to identify drugs with multiple desirable properties for prevention and treatment of COVID-19.


2022 ◽  
Vol 12 ◽  
Author(s):  
Shahbaz M. Khan ◽  
Xuejin Zhang ◽  
William H. Witola

Cryptosporidium parvum is a highly prevalent protozoan parasite that causes a diarrheal disease in humans and animals worldwide. Thus far, the moderately effective nitazoxanide is the only drug approved by the United States Food and Drug Administration for treating cryptosporidiosis in immunocompetent humans. However, no effective drug exists for the severe disease seen in young children, immunocompromised individuals and neonatal livestock. C. parvum lacks the Krebs cycle and the oxidative phosphorylation steps, making it dependent solely on glycolysis for metabolic energy production. Within its glycolytic pathway, C. parvum possesses two unique enzymes, the bacterial-type lactate dehydrogenase (CpLDH) and the plant-like pyruvate kinase (CpPyK), that catalyze two sequential steps for generation of essential metabolic energy. We have previously reported that inhibitors of CpLDH are effective against C. parvum, both in vitro and in vivo. Herein, we developed an in vitro assay for the enzymatic activity of recombinant CpPyK protein and used it to screen a chemical compound library for inhibitors of CpPyK’s activity. The identified inhibitors were tested (at non-toxic concentrations) for efficacy against C. parvum using in vitro assays, and an in vivo mouse infection model. We identified six CpPyK inhibitors that blocked in vitro growth and proliferation of C. parvum at low micromolar concentrations (EC50 values ranging from 10.29 to 86.01 μM) that were non-toxic to host cells. Among those six compounds, two (NSC252172 and NSC234945) were found to be highly efficacious against cryptosporidiosis in immunocompromised mice at a dose of 10 mg/kg body weight, with very significant reduction in parasite load and amelioration of intestinal pathologies. Together, these findings have unveiled inhibitors for an essential molecular target in C. parvum and demonstrated their efficacy against the parasite in vitro and in vivo. These inhibitors are, therefore, potential lead-compounds for developing efficacious treatments for cryptosporidiosis.


2019 ◽  
Vol 87 (11) ◽  
Author(s):  
Panpan Wei ◽  
Mingxiao Ning ◽  
Meijun Yuan ◽  
Xiangqian Li ◽  
Hao Shi ◽  
...  

ABSTRACT Spiroplasma eriocheiris causes great economic losses in the crustacean aquaculture industry. However, the mechanism of S. eriocheiris infecting host cells has been poorly studied. We established a Spiroplasma-infected Drosophila Schneider 2 (S2) cell model and investigated its pathogenic mechanism. First, S. eriocheiris induced S2 cell apoptosis and necrosis, seriously decreased cell viability, and increased the production of intracellular reactive oxygen species. Further research showed that S. eriocheiris can invade S2 cells, and the number of copies of intracellular spiroplasmas is sharply increased by 12 h postinfection. In addition, S. eriocheiris can cause S2 cells to form typical inclusion bodies and exhibit large vacuoles. Second, S. eriocheiris is internalized into S2 cells and strongly inhibited through blocking clathrin-mediated endocytosis using chlorpromazine and dynasore. Inhibitors of macropinocytosis, protein kinase C and myosin II, cause a significant reduction in S. eriocheiris in S2 cells. In contrast, disruption of cellular cholesterol by methyl-β-cyclodextrin and nystatin has no effect on S. eriocheiris infection. These results suggest that the entry of S. eriocheiris into S2 cells relies on clathrin-dependent endocytosis and macropinocytosis, but not via the caveola-mediated endocytic pathway. In addition, the intracellular numbers of S. eriocheiris are dramatically reduced after S2 cells are treated with cytoskeleton-depolymerizing agents, including nocodazole and cytochalasin B. Thus, cellular infection by S. eriocheiris is related to microtubules and actin filaments. This research successfully shows for the first time that S. eriocheiris can invade Drosophila S2 cells and provides a process for S. eriocheiris infection.


2019 ◽  
Vol 221 (11) ◽  
pp. 1816-1825
Author(s):  
Xue Yu ◽  
Fengguang Guo ◽  
Rola Barhoumi Mouneimne ◽  
Guan Zhu

Abstract Background Cryptosporidium is a genus of apicomplexan parasites, the causative agents of cryptosporidiosis in humans and/or animals. Although most apicomplexans parasitize within the host cell cytosols, Cryptosporidium resides on top of host cells, but it is embraced by a double-layer parasitophorous vacuole membrane derived from host cell. There is an electron-dense band to separate the parasite from host cell cytoplasm, making it as an intracellular but extracytoplasmic parasite. However, little is known on the molecular machinery at the host cell-parasite interface. Methods Cryptosporidium parvum at various developmental stages were obtained by infecting HCT-8 cells cultured in vitro. Immunofluorescence assay was used to detect CpEF1α with a polyclonal antibody and host cell F-actin with rhodamine-phalloidin. Recombinant CpEF1α protein was used to evaluate its effect on the invasion by the parasite. Results We discovered that a C parvum translation elongation factor 1α (CpEF1α) was discharged from the invading sporozoites into host cells, forming a crescent-shaped patch that fully resembles the electron-dense band. At the same time, host cell F-actin aggregated to form a globular-shaped plug beneath the CpEF1α patch. The CpEF1α patch remained for most of the time but became weakened and dissolved upon the completion of the invasion process. In addition, recombinant CpEF1α protein could effectively interfere the invasion of sporozoites into host cells. Conclusions CpEF1α plays a role in the parasite invasion by participating in the formation of electron-dense band at the base of the parasite infection site.


Vaccines ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 22 ◽  
Author(s):  
Zhiqiang Hu ◽  
Yuhong Pan ◽  
Anchun Cheng ◽  
Xingcui Zhang ◽  
Mingshu Wang ◽  
...  

Duck Tembusu virus (DTMUV) has recently appeared in ducks in China and the key cellular determiners for DTMUV replication in host cells remain unknown. Autophagy is an evolutionarily conserved cellular process that has been reported to facilitate flavivirus replication. In this study, we utilized primary duck embryo fibroblast (DEF) as the cell model and found that DTMUV infection triggered LC3-II increase and polyubiquitin-binding protein sequestosome 1 (p62) decrease, confirming that complete autophagy occurred in DEF cells. The induction of autophagy by pharmacological treatment increased DTMUV replication in DEF cells, whereas the inhibition of autophagy with pharmacological treatments or RNA interference decreased DTMUV replication. Inhibiting autophagy enhanced the activation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and interferon regulatory factor 7 (IRF7) pathways and increased the p62 protein level in DTMUV-infected cells. We further found that the overexpression of p62 decreased DTMUV replication and inhibited the activation of the NF-κB and IRF7 pathways, and changes in the NF-κB and IRF7 pathways were consistent with the level of phosphorylated TANK-binding kinase 1 (p-TBK1). Opposite results were found in p62 knockdown cells. In summary, we found that autophagy-mediated p62 degradation acted as a new strategy for DTMUV to evade host innate immunity.


Microbiology ◽  
2004 ◽  
Vol 150 (5) ◽  
pp. 1191-1195 ◽  
Author(s):  
Xiaomin Cai ◽  
Cheryl A. Lancto ◽  
Mitchell S. Abrahamsen ◽  
Guan Zhu

The genome of Cryptosporidium parvum contains a relatively small number of introns, which includes the β-tubulin gene with only a single intron. Recently, it was observed that the intron was not removed from some of the β-tubulin transcripts in the late life cycle stages cultured in vitro. Although normally spliced β-tubulin mRNA was detected in all parasite intracellular stages by RT-PCR (e.g. HCT-8 or Caco-2 cells infected with C. parvum for 12–72 h), at 48–72 h post-infection unprocessed β-tubulin transcripts containing intact introns started to appear in parasite mRNA within infected host cells. The intron-containing transcripts could be detected by fluorescence in situ hybridization (FISH) using an intron-specific probe. The intron-containing β-tubulin transcripts appeared unique to the in vitro-cultured C. parvum, since they were not detected in parasite-infected calves at 72 h. As yet, it is unclear whether the late life cycle stages of C. parvum are partially deficient in intron-splicing or the intron-splicing processes have merely slowed, both of which would allow the detection of intron-containing transcripts. Another possible explanation is that the decay in transcript processing might simply be due to the onset of parasite death. Nonetheless, the appearance of intron-containing transcripts coincides with the arrest of C. parvum development in vitro. This unusual observation prompts speculation that the abnormal intron-splicing of β-tubulin transcripts may be one of the factors preventing complete development of this parasite in vitro. Furthermore, the presence of both processed and unprocessed introns in β-tubulin transcripts in vitro may provide a venue for studying overall mechanisms for intron-splicing in this parasite.


Sign in / Sign up

Export Citation Format

Share Document