scholarly journals Regulators of the Bacillus subtilis cydABCD Operon: Identification of a Negative Regulator, CcpA, and a Positive Regulator, ResD

2007 ◽  
Vol 189 (9) ◽  
pp. 3348-3358 ◽  
Author(s):  
Ankita Puri-Taneja ◽  
Matthew Schau ◽  
Yinghua Chen ◽  
F. Marion Hulett

ABSTRACT The cydABCD operon of Bacillus subtilis encodes products required for the production of cytochrome bd oxidase. Previous work has shown that one regulatory protein, YdiH (Rex), is involved in the repression of this operon. The work reported here confirms the role of Rex in the negative regulation of the cydABCD operon. Two additional regulatory proteins for the cydABCD operon were identified, namely, ResD, a response regulator involved in the regulation of respiration genes, and CcpA, the carbon catabolite regulator protein. ResD, but not ResE, was required for full expression of the cydA promoter in vivo. ResD binding to the cydA promoter between positions −58 and −107, a region which includes ResD consensus binding sequences, was not enhanced by phosphorylation. A ccpA mutant had increased expression from the full-length cydA promoter during stationary growth compared to the wild-type strain. Maximal expression in a ccpA mutant was observed from a 3′-deleted cydA promoter fusion that lacked the Rex binding region, suggesting that the effect of the two repressors, Rex and CcpA, was cumulative. CcpA binds directly to the cydA promoter, protecting the region from positions −4 to −33, which contains sequences similar to the CcpA consensus binding sequence, the cre box. CcpA binding was enhanced upon addition of glucose-6-phosphate, a putative cofactor for CcpA. Mutation of a conserved residue in the cre box reduced CcpA binding 10-fold in vitro and increased cydA expression in vivo. Thus, CcpA and ResD, along with the previously identified cydA regulator Rex (YdiH), affect the expression of the cydABCD operon. Low-level induction of the cydA promoter was observed in vivo in the absence of its regulatory proteins, Rex, CcpA, and ResD. This complex regulation suggests that the cydA promoter is tightly regulated to allow its expression only at the appropriate time and under the appropriate conditions.

1992 ◽  
Vol 12 (4) ◽  
pp. 1568-1577
Author(s):  
J V Paietta

The cys-3+ gene of Neurospora crassa encodes a bZIP (basic region-leucine zipper) regulatory protein that is essential for sulfur structural gene expression (e.g., ars-1+). Nuclear transcription assays confirmed that cys-3+ was under sulfur-regulated transcriptional control and that cys-3+ transcription was constitutive in sulfur controller (scon)-negative regulator mutants. Given these results, I have tested whether expression of cys-3+ under high-sulfur (repressing) conditions was sufficient to induce sulfur gene expression. The N. crassa beta-tubulin (tub) promoter was fused to the cys-3+ coding segment and used to transform a cys-3 deletion mutant. Function of the tub::cys-3 fusion in homokaryotic transformants grown under high-sulfur conditions was confirmed by Northern (RNA) and Western immunoblot analysis. The tub::cys-3 transformants showed arylsulfatase gene expression under normally repressing high-sulfur conditions. A tub::cys-3ts fusion encoding a temperature-sensitive CYS3 protein was used to confirm that the induced structural gene expression was due to CYS3 protein function. Constitutive CYS3 production did not induce scon-2+ expression under repressing conditions. In addition, a cys-3 promoter fusion to lacZ showed that CYS3 production was sufficient to induce its own expression and provides in vivo evidence for autoregulation. Finally, an apparent inhibitory effect observed with a strain carrying a point mutation at the cys-3 locus was examined by in vitro heterodimerization studies. These results support an interpretation of CYS3 as a transcriptional activator whose regulation is a crucial control point in the signal response pathway triggered by sulfur limitation.


mBio ◽  
2013 ◽  
Vol 4 (3) ◽  
Author(s):  
Varisa Huangyutitham ◽  
Zehra Tüzün Güvener ◽  
Caroline S. Harwood

ABSTRACT WspR is a hybrid response regulator-diguanylate cyclase that is phosphorylated by the Wsp signal transduction complex in response to growth of Pseudomonas aeruginosa on surfaces. Active WspR produces cyclic di-GMP (c-di-GMP), which in turn stimulates biofilm formation. In previous work, we found that when activated by phosphorylation, yellow fluorescent protein (YFP)-tagged WspR forms clusters that are visible in individual cells by fluorescence microscopy. Unphosphorylated WspR is diffuse in cells and not visible. Thus, cluster formation is an assay for WspR signal transduction. To understand how and why WspR forms subcellular clusters, we analyzed cluster formation and the enzymatic activities of six single amino acid variants of WspR. In general, increased cluster formation correlated with increased in vivo and in vitro diguanylate cyclase activities of the variants. In addition, WspR specific activity was strongly concentration dependent in vitro, and the effect of the protein concentration on diguanylate cyclase activity was magnified when WspR was treated with the phosphor analog beryllium fluoride. Cluster formation appears to be an intrinsic property of phosphorylated WspR (WspR-P). These results support a model in which the formation of WspR-P subcellular clusters in vivo in response to a surface stimulus is important for potentiating the diguanylate cyclase activity of WspR. Subcellular cluster formation appears to be an additional means by which the activity of a response regulator protein can be regulated. IMPORTANCE Bacterial sensor proteins often phosphorylate cognate response regulator proteins when stimulated by an environmental signal. Phosphorylated response regulators then mediate an appropriate adaptive cellular response. About 6% of response regulator proteins have an enzymatic domain that is involved in producing or degrading cyclic di-GMP (c-di-GMP), a molecule that stimulates bacterial biofilm formation. In this work, we examined the in vivo and in vitro behavior of the response regulator-diguanylate cyclase WspR. When phosphorylated in response to a signal associated with surface growth, WspR has a tendency to form oligomers that are visible in cells as subcellular clusters. Our results show that the formation of phosphorylated WspR (WspR-P) subcellular clusters is important for potentiating the diguanylate cyclase activity of WspR-P, making it more active in c-di-GMP production. We conclude that oligomer formation visualized as subcellular clusters is an additional mechanism by which the activities of response regulator-diguanylate cyclases can be regulated.


2005 ◽  
Vol 187 (9) ◽  
pp. 3238-3248 ◽  
Author(s):  
Sarah Elderkin ◽  
Patricia Bordes ◽  
Susan Jones ◽  
Mathieu Rappas ◽  
Martin Buck

ABSTRACT The Escherichia coli phage shock protein system (pspABCDE operon and pspG gene) is induced by numerous stresses related to the membrane integrity state. Transcription of the psp genes requires the RNA polymerase containing the σ54 subunit and the AAA transcriptional activator PspF. PspF belongs to an atypical class of σ54 AAA activators in that it lacks an N-terminal regulatory domain and is instead negatively regulated by another regulatory protein, PspA. PspA therefore represses its own expression. The PspA protein is distributed between the cytoplasm and the inner membrane fraction. In addition to its transcriptional inhibitory role, PspA assists maintenance of the proton motive force and protein export. Several lines of in vitro evidence indicate that PspA-PspF interactions inhibit the ATPase activity of PspF, resulting in the inhibition of PspF-dependent gene expression. In this study, we characterize sequences within PspA and PspF crucial for the negative effect of PspA upon PspF. Using a protein fragmentation approach, we show that the integrity of the three putative N-terminal α-helical domains of PspA is crucial for the role of PspA as a negative regulator of PspF. A bacterial two-hybrid system allowed us to provide clear evidence for an interaction in E. coli between PspA and PspF in vivo, which strongly suggests that PspA-directed inhibition of PspF occurs via an inhibitory complex. Finally, we identify a single PspF residue that is a binding determinant for PspA.


2003 ◽  
Vol 185 (16) ◽  
pp. 4764-4771 ◽  
Author(s):  
Hesheng Zhang ◽  
Robert L. Switzer

ABSTRACT The genes encoding the enzymes of pyrimidine nucleotide biosynthesis (pyr genes) are regulated in Bacillus subtilis and many other bacterial species by transcriptional attenuation. When UMP or UTP is bound to the PyrR regulatory protein, it binds to pyr mRNA at specific sequences and secondary structures in the RNA. Binding to this site prevents formation of an antiterminator stem-loop in the RNA and permits formation of a downstream terminator, leading to reduced expression of the pyr genes lying downstream from the terminator. The functioning of several other transcriptional attenuation systems has been shown to involve transcriptional pausing; this observation stimulated us to use single-round transcription of pyr genes to test for formation of paused transcripts in vitro. Using templates with each of the three known B. subtilis pyr attenuation sites, we identified one major pause site in each in which the half-life of the paused transcript was increased four- to sixfold by NusA. In each case pausing at the NusA-stimulated site prevented formation of a complete antiterminator stem-loop, while it resulted in increased time for a PyrR binding loop to form and for PyrR to bind to this loop. Thus, the pausing detected in vitro is potentially capable of playing a role in establishing the correct timing for pyr attenuation in vivo. With two of three pyr templates the combination of NusA with PyrR markedly stimulated termination of transcription at the normal termination sites. This suggests that NusA, by stabilizing pausing, plays a role in termination of pyr transcription in vivo.


2017 ◽  
Vol 474 (24) ◽  
pp. 4119-4136 ◽  
Author(s):  
Alok K. Mishra ◽  
Shivraj M. Yabaji ◽  
Rikesh K. Dubey ◽  
Ekta Dhamija ◽  
Kishore K. Srivastava

The remarkable ability of Mycobacterium tuberculosis (Mtb) to survive inside human macrophages is attributed to the presence of a complex sensory and regulatory network. PrrA is a DNA-binding regulatory protein, belonging to an essential two-component system (TCS), PrrA/B, which is required for early phase intracellular replication of Mtb. Despite its importance, the mechanism of PrrA/B-mediated signaling is not well understood. In the present study, we demonstrate that the binding of PrrA on the promoter DNA and its consequent activation is cumulatively controlled via dual phosphorylation of the protein. We have further characterized the role of terminal phospho-acceptor domain in the physical interaction of PrrA with its cognate kinase PrrB. The genetic deletion of prrA/B in Mycobacterium smegmatis was possible only in the presence of ectopic copies of the genes, suggesting the essentiality of this TCS in fast-growing mycobacterial strains as well. The overexpression of phospho-mimetic mutant (T6D) altered the growth of M. smegmatis in an in vitro culture and affected the replication of Mycobacterium bovis BCG in mouse peritoneal macrophages. Interestingly, the Thr6 site was found to be conserved in Mtb complex, whereas it was altered in some fast-growing mycobacterial strains, indicating that this unique phosphorylation might be predominant in employing the regulatory circuit in M. bovis BCG and presumably also in Mtb complex.


2003 ◽  
Vol 185 (16) ◽  
pp. 4861-4871 ◽  
Author(s):  
Sophie Stephenson ◽  
Christian Mueller ◽  
Min Jiang ◽  
Marta Perego

ABSTRACT In Bacillus subtilis, an export-import pathway regulates production of the Phr pentapeptide inhibitors of Rap proteins. Processing of the Phr precursor proteins into the active pentapeptide form is a key event in the initiation of sporulation and competence development. The PhrA (ARNQT) and PhrE (SRNVT) peptides inhibit the RapA and RapE phosphatases, respectively, whose activity is directed toward the Spo0F∼P intermediate response regulator of the sporulation phosphorelay. The PhrC (ERGMT) peptide inhibits the RapC protein acting on the ComA response regulator for competence with regard to DNA transformation. The structural organization of PhrA, PhrE, and PhrC suggested a role for type I signal peptidases in the processing of the Phr preinhibitor, encoded by the phr genes, into the proinhibitor form. The proinhibitor was then postulated to be cleaved to the active pentapeptide inhibitor by an additional enzyme. In this report, we provide evidence that Phr preinhibitor proteins are subject to only one processing event at the peptide bond on the amino-terminal end of the pentapeptide. This processing event is most likely independent of type I signal peptidase activity. In vivo and in vitro analyses indicate that none of the five signal peptidases of B. subtilis (SipS, SipT, SipU, SipV, and SipW) are indispensable for Phr processing. However, we show that SipV and SipT have a previously undescribed role in sporulation, competence, and cell growth.


2004 ◽  
Vol 186 (7) ◽  
pp. 2028-2037 ◽  
Author(s):  
Hao Geng ◽  
Shunji Nakano ◽  
Michiko M. Nakano

ABSTRACT The expression of genes involved in nitrate respiration in Bacillus subtilis is regulated by the ResD-ResE two-component signal transduction system. The membrane-bound ResE sensor kinase perceives a redox-related signal(s) and phosphorylates the cognate response regulator ResD, which enables interaction of ResD with ResD-dependent promoters to activate transcription. Hydroxyl radical footprinting analysis revealed that ResD tandemly binds to the −41 to −83 region of hmp and the −46 to −92 region of nasD. In vitro runoff transcription experiments showed that ResD is necessary and sufficient to activate transcription of the ResDE regulon. Although phosphorylation of ResD by ResE kinase greatly stimulated transcription, unphosphorylated ResD, as well as ResD with a phosphorylation site (Asp57) mutation, was able to activate transcription at a low level. The D57A mutant was shown to retain the activity in vivo to induce transcription of the ResDE regulon in response to oxygen limitation, suggesting that ResD itself, in addition to its activation through phosphorylation-mediated conformation change, senses oxygen limitation via an unknown mechanism leading to anaerobic gene activation.


1992 ◽  
Vol 12 (4) ◽  
pp. 1568-1577 ◽  
Author(s):  
J V Paietta

The cys-3+ gene of Neurospora crassa encodes a bZIP (basic region-leucine zipper) regulatory protein that is essential for sulfur structural gene expression (e.g., ars-1+). Nuclear transcription assays confirmed that cys-3+ was under sulfur-regulated transcriptional control and that cys-3+ transcription was constitutive in sulfur controller (scon)-negative regulator mutants. Given these results, I have tested whether expression of cys-3+ under high-sulfur (repressing) conditions was sufficient to induce sulfur gene expression. The N. crassa beta-tubulin (tub) promoter was fused to the cys-3+ coding segment and used to transform a cys-3 deletion mutant. Function of the tub::cys-3 fusion in homokaryotic transformants grown under high-sulfur conditions was confirmed by Northern (RNA) and Western immunoblot analysis. The tub::cys-3 transformants showed arylsulfatase gene expression under normally repressing high-sulfur conditions. A tub::cys-3ts fusion encoding a temperature-sensitive CYS3 protein was used to confirm that the induced structural gene expression was due to CYS3 protein function. Constitutive CYS3 production did not induce scon-2+ expression under repressing conditions. In addition, a cys-3 promoter fusion to lacZ showed that CYS3 production was sufficient to induce its own expression and provides in vivo evidence for autoregulation. Finally, an apparent inhibitory effect observed with a strain carrying a point mutation at the cys-3 locus was examined by in vitro heterodimerization studies. These results support an interpretation of CYS3 as a transcriptional activator whose regulation is a crucial control point in the signal response pathway triggered by sulfur limitation.


2010 ◽  
Vol 192 (12) ◽  
pp. 3103-3113 ◽  
Author(s):  
Bindiya Kaushal ◽  
Salbi Paul ◽  
F. Marion Hulett

ABSTRACT Induction of the Pho response in Bacillus subtilis occurs when the Pi concentrations in the growth medium fall below 0.1 mM, a condition which results in slowed cellular growth followed by entry into stationary phase. The phoPR promoter region contains three σA-responsive promoters; only promoter PA4 is PhoP autoregulated. Expression of the phoPR operon is postexponential, suggesting the possibility of a repressor role for a transition-state-regulatory protein(s). Expression of a phoPR promoter-lacZ fusion in a scoC loss-of-function mutant strain grown in low-phosphate defined medium was significantly higher than expression in the wild-type strain during exponential growth or stationary phase. Derepression in the scoC strain from a phoP promoter fusion containing a mutation in the CcpA binding site (cre1) was further elevated approximately 1.4-fold, indicating that the repressor effects of ScoC and CcpA on phoP expression were cumulative. DNase I footprinting showed protection of putative binding sites by ScoC, which included the −10 and/or −35 elements of five (PB1, PE2, PA3, PA4, and PA6) of the six promoters within the phoPR promoter region. PA6 was expressed in vivo from the phoP cre1 promoter fusion in both wild-type and scoC strains. Evidence for ScoC repression in vivo was shown by primer extension for PA4 and PA3 from the wild-type promoter and for PA4 and PE2 from the phoP cre1 promoter. The latter may reflect ScoC repression of sporulation that indirectly affects phoPR transcription. ScoC was shown to repress PA6, PA4, PE2, and PB1 in vitro.


Sign in / Sign up

Export Citation Format

Share Document