scholarly journals The Two-Component Regulatory System senX3-regX3 Regulates Phosphate-Dependent Gene Expression in Mycobacterium smegmatis

2007 ◽  
Vol 189 (15) ◽  
pp. 5495-5503 ◽  
Author(s):  
Robert T. Glover ◽  
Jordan Kriakov ◽  
Scott J. Garforth ◽  
Anthony D. Baughn ◽  
William R. Jacobs

ABSTRACT Phosphate import is required for the growth of mycobacteria and is regulated by environmental inorganic phosphate (Pi) concentrations, although the mechanism of this regulation has not been characterized. The expression of genes involved in Pi acquisition is frequently regulated by two-component regulatory systems (2CRs) consisting of a sensor histidine kinase and a DNA-binding response regulator. In this work, we have identified the senX3-regX3 2CR as a Pi-dependent regulator of genes involved in phosphate acquisition in Mycobacterium smegmatis. Characterization of senX3 mutants with different PhoA phenotypes suggests a dual role for SenX3 as a phosphatase or a phosphodonor for the response regulator RegX3, depending upon Pi availability. Expression of PhoA activity required phosphorylation of RegX3, consistent with a role for phosphorylated RegX3 (RegX3∼P) as a transcriptional activator of phoA. Furthermore, purified RegX3∼P bound to promoter sequences from phoA, senX3, and the high-affinity phosphate transporter component pstS, demonstrating direct transcriptional control of all three genes. DNase I footprinting and primer extension analyses have further defined the DNA-binding region and transcriptional start site within the phoA promoter. A DNA motif consisting of an inverted repeat was identified in each of the promoters bound by RegX3∼P. Based upon our findings, we propose a model for Pi-regulated gene expression mediated by SenX3-RegX3 in mycobacteria.

2011 ◽  
Vol 77 (17) ◽  
pp. 5879-5887 ◽  
Author(s):  
Ju-Hoon Lee ◽  
Xiulan Li ◽  
Daniel J. O'Sullivan

ABSTRACTBifidobacterium longumDJO10A was previously demonstrated to produce a lantibiotic, but only during growth on agar media. To evaluate the feasibility of production of this lantibiotic in broth media, a transcription analysis of thelanAgene was undertaken. Comparative microarray analysis of broth and agar cultures ofB. longumDJO10A revealed that the lantibiotic production, modification, transport/peptidase, and immunity genes were significantly upregulated in agar cultures, while the two-component regulatory genes were expressed equally under both conditions. This suggested that the signal transduction regulatory system should function in broth cultures. Real-time PCR and Northern hybridization confirmed thatlanAgene expression was significantly repressed in broth cultures. A crude lantibiotic preparation from an agar-grown culture was obtained, and its antimicrobial spectrum analysis revealed a broad inhibition range. Addition of this extract to broth cultures ofB. longumDJO10A inducedlanAgene expression in a dose-dependent fashion. Subinoculation using >10% of an induced broth culture maintainedlanAexpression. The expression oflanAwas log-phase specific, being significantly downregulated in stationary phase. Transcription start analysis oflanArevealed a 284-bp 5′ untranslated region, which was proposed to be involved in repression of transcription, while an inverted repeat structure located at bp −75 relative to the transcription start was strategically located to likely function as a binding site for the two-component response regulator. Understanding the transcription regulation of thislanAgene is the first step toward enabling production of this novel and potentially interesting lantibiotic in broth cultures.


2009 ◽  
Vol 191 (8) ◽  
pp. 2656-2667 ◽  
Author(s):  
Stephanie N. Joslin ◽  
David R. Hendrixson

ABSTRACT Activation of σ54-dependent gene expression essential for formation of flagella in Campylobacter jejuni requires the components of the inner membrane-localized flagellar export apparatus and the FlgSR two-component regulatory system. In this study, we characterized the FlgS sensor kinase and how activation of the protein is linked to the flagellar export apparatus. We found that FlgS is localized to the C. jejuni cytoplasm and that His141 of FlgS is essential for autophosphorylation, phosphorelay to the cognate FlgR response regulator, motility, and expression of σ54-dependent flagellar genes. Mutants with incomplete flagellar export apparatuses produced wild-type levels of FlgS and FlgR, but they were defective for signaling through the FlgSR system. By using genetic approaches, we found that FlgSR activity is linked to and downstream of the flagellar export apparatus in a regulatory cascade that terminates in expression of σ54-dependent flagellar genes. By analyzing defined flhB and fliI mutants of C. jejuni that form flagellar export apparatuses that are secretion incompetent, we determined that formation of the apparatus is required to contribute to the signal sensed by FlgS to terminate in activation of expression of σ54-dependent flagellar genes. Considering that the flagellar export apparatuses of Escherichia coli and Salmonella species influence σ28-dependent flagellar gene expression, our work expands the signaling activity of the apparatuses to include σ54-dependent pathways of C. jejuni and possibly other motile bacteria. This study indicates that these apparatuses have broader functions beyond flagellar protein secretion, including activation of essential two-component regulatory systems required for expression of σ54-dependent flagellar genes.


2018 ◽  
Author(s):  
Huiqing Zheng ◽  
Bilal Aleiwi ◽  
Edmund Ellsworth ◽  
Robert B. Abramovitch

AbstractMycobacterium tuberculosis (Mtb) possesses a two-component regulatory system, DosRST, that enables Mtb to sense host immune cues and establish a state of non-replicating persistence (NRP). NRP bacteria are tolerant to several anti-mycobacterial drugs and are thought to play a role in the long course of tuberculosis (TB) therapy. Therefore, small molecules that inhibit Mtb from establishing or maintaining NRP could reduce the reservoir of drug tolerant bacteria and function as an adjunct therapy to reduce treatment time. Previously, we reported the discovery of six novel chemical inhibitors of DosRST, named HC101A-106A, from a whole cell, reporter-based phenotypic high throughput screen. Here, we report functional and mechanism of action studies of HC104A and HC106A. RNAseq transcriptional profiling shows that the compounds downregulate genes of the DosRST regulon. Both compounds reduce hypoxia-induced triacylglycerol synthesis by ~50%. HC106A inhibits Mtb survival during hypoxia-induced NRP, however, HC104A did not inhibit survival during NRP. An electrophoretic mobility assay shows that HC104A inhibits DosR DNA binding in a dose-dependent manner, indicating that HC104A may function by directly targeting DosR. In contrast, UV-visible spectroscopy studies suggest HC106A directly targets the histidine kinase heme, via a mechanism that is distinct from the oxidation and alkylation of heme previously observed with artemisinin (HC101A). Synergistic interactions were observed when DosRST inhibitors were examined in pair-wise combinations with the strongest potentiation observed between artemisinin paired with HC102A, HC103A, or HC106A. Our data collectively show that the DosRST pathway can be inhibited by multiple distinct mechanisms.


2006 ◽  
Vol 73 ◽  
pp. 85-96 ◽  
Author(s):  
Richard J. Reece ◽  
Laila Beynon ◽  
Stacey Holden ◽  
Amanda D. Hughes ◽  
Karine Rébora ◽  
...  

The recognition of changes in environmental conditions, and the ability to adapt to these changes, is essential for the viability of cells. There are numerous well characterized systems by which the presence or absence of an individual metabolite may be recognized by a cell. However, the recognition of a metabolite is just one step in a process that often results in changes in the expression of whole sets of genes required to respond to that metabolite. In higher eukaryotes, the signalling pathway between metabolite recognition and transcriptional control can be complex. Recent evidence from the relatively simple eukaryote yeast suggests that complex signalling pathways may be circumvented through the direct interaction between individual metabolites and regulators of RNA polymerase II-mediated transcription. Biochemical and structural analyses are beginning to unravel these elegant genetic control elements.


Microbiology ◽  
2004 ◽  
Vol 150 (6) ◽  
pp. 1851-1857 ◽  
Author(s):  
Nicole Gliese ◽  
Viola Khodaverdi ◽  
Max Schobert ◽  
Helmut Görisch

The response regulator AgmR was identified to be involved in the regulation of the quinoprotein ethanol oxidation system of Pseudomonas aeruginosa ATCC 17933. Interruption of the agmR gene by insertion of a kanamycin-resistance cassette resulted in mutant NG3, unable to grow on ethanol. After complementation with the intact agmR gene, growth on ethanol was restored. Transcriptional lacZ fusions were used to identify four operons which are regulated by the AgmR protein: the exaA operon encodes the pyrroloquinoline quinone (PQQ)-dependent ethanol dehydrogenase, the exaBC operon encodes a soluble cytochrome c 550 and an aldehyde dehydrogenase, the pqqABCDE operon carries the PQQ biosynthetic genes, and operon exaDE encodes a two-component regulatory system which controls transcription of the exaA operon. Transcription of exaA was restored by transformation of NG3 with a pUCP20T derivative carrying the exaDE genes under lac-promoter control. These data indicate that the AgmR response regulator and the exaDE two-component regulatory system are organized in a hierarchical manner. Gene PA1977, which appears to form an operon with the agmR gene, was found to be non-essential for growth on ethanol.


2006 ◽  
Vol 189 (4) ◽  
pp. 1342-1350 ◽  
Author(s):  
Stuart J. McKessar ◽  
Regine Hakenbeck

ABSTRACT The two-component system TCS08 is one of the regulatory systems that is important for virulence of Streptococcus pneumoniae. In order to investigate the TCS08 regulon, we have analyzed transcription profiles of mutants derived from S. pneumoniae R6 by microarray analysis. Since deletion mutants are often without a significant phenotype, we constructed a mutation in the histidine kinase HK08, T133P, in analogy to the phosphatase mutation T230P in the H box of the S. pneumoniae CiaH kinase described recently (D. Zähner, K. Kaminski, M. van der Linden, T. Mascher, M. Merai, and R. Hakenbeck, J. Mol. Microbiol. Biotechnol. 4:211-216, 2002). In addition, a deletion mutation was constructed in rr08, encoding the cognate response regulator. The most heavily suppressed genes in the hk08 mutant were spr0276 to spr0282, encoding a putative cellobiose phosphoenolpyruvate sugar phosphotransferase system (PTS). Whereas the R6 Smr parent strain and the Δrr08 mutant readily grew on cellobiose, the hk08 mutant and selected mutants with deletions in the PTS cluster did not, strongly suggesting that TCS08 is involved in the catabolism of cellobiose. Homologues of the TCS08 system were found in closely related streptococci and other gram-positive cocci. However, the genes spr0276 to spr0282, encoding the putative cellobiose PTS, represent a genomic island in S. pneumoniae and homologues were found in Streptococcus gordonii only, suggesting that this system might contribute to the pathogenicity potential of the pneumococcus.


2014 ◽  
Vol 197 (5) ◽  
pp. 861-871 ◽  
Author(s):  
Kumiko Kurabayashi ◽  
Yuko Hirakawa ◽  
Koichi Tanimoto ◽  
Haruyoshi Tomita ◽  
Hidetada Hirakawa

Particular interest in fosfomycin has resurfaced because it is a highly beneficial antibiotic for the treatment of refractory infectious diseases caused by pathogens that are resistant to other commonly used antibiotics. The biological cost to cells of resistance to fosfomycin because of chromosomal mutation is high. We previously found that a bacterial two-component system, CpxAR, induces fosfomycin tolerance in enterohemorrhagicEscherichia coli(EHEC) O157:H7. This mechanism does not rely on irreversible genetic modification and allows EHEC to relieve the fitness burden that results from fosfomycin resistance in the absence of fosfomycin. Here we show that another two-component system, TorSRT, which was originally characterized as a regulatory system for anaerobic respiration utilizing trimethylamine-N-oxide (TMAO), also induces fosfomycin tolerance. Activation of the Tor regulatory pathway by overexpression oftorR, which encodes the response regulator, or addition of TMAO increased fosfomycin tolerance in EHEC. We also show that phosphorylated TorR directly represses the expression ofglpT, a gene that encodes a symporter of fosfomycin and glycerol-3-phosphate, and activation of the TorR protein results in the reduced uptake of fosfomycin by cells. However, cells in which the Tor pathway was activated had an impaired growth phenotype when cultured with glycerol-3-phosphate as a carbon substrate. These observations suggest that the TorSRT pathway is the second two-component system to reversibly control fosfomycin tolerance and glycerol-3-phosphate uptake in EHEC, and this may be beneficial for bacteria by alleviating the biological cost. We expect that this mechanism could be a potential target to enhance the utility of fosfomycin as chemotherapy against multidrug-resistant pathogens.


2009 ◽  
Vol 191 (21) ◽  
pp. 6602-6611 ◽  
Author(s):  
Murat Balaban ◽  
Stephanie N. Joslin ◽  
David R. Hendrixson

ABSTRACT FlhF proteins are putative GTPases that are often necessary for one or more steps in flagellar organelle development in polarly flagellated bacteria. In Campylobacter jejuni, FlhF is required for σ54-dependent flagellar gene expression and flagellar biosynthesis, but how FlhF influences these processes is unknown. Furthermore, the GTPase activity of any FlhF protein and the requirement of this speculated activity for steps in flagellar biosynthesis remain uncharacterized. We show here that C. jejuni FlhF hydrolyzes GTP, indicating that these proteins are GTPases. C. jejuni mutants producing FlhF proteins with reduced GTPase activity were not severely defective for σ54-dependent flagellar gene expression, unlike a mutant lacking FlhF. Instead, these mutants had a propensity to lack flagella or produce flagella in improper numbers or at nonpolar locations, indicating that GTP hydrolysis by FlhF is required for proper flagellar biosynthesis. Additional studies focused on elucidating a possible role for FlhF in σ54-dependent flagellar gene expression were conducted. These studies revealed that FlhF does not influence production of or signaling between the flagellar export apparatus and the FlgSR two-component regulatory system to activate σ54. Instead, our data suggest that FlhF functions in an independent pathway that converges with or works downstream of the flagellar export apparatus-FlgSR pathway to influence σ54-dependent gene expression. This study provides corroborative biochemical and genetic analyses suggesting that different activities of the C. jejuni FlhF GTPase are required for distinct steps in flagellar gene expression and biosynthesis. Our findings are likely applicable to many polarly flagellated bacteria that utilize FlhF in flagellar biosynthesis processes.


2000 ◽  
Vol 182 (7) ◽  
pp. 1872-1882 ◽  
Author(s):  
Robin L. Lucas ◽  
C. Phoebe Lostroh ◽  
Concetta C. DiRusso ◽  
Michael P. Spector ◽  
Barry L. Wanner ◽  
...  

HilA activates the expression of Salmonella entericaserovar Typhimurium invasion genes. To learn more about regulation ofhilA, we isolated Tn5 mutants exhibiting reduced hilA and/or invasion gene expression. In addition to expected mutations, we identified Tn5 insertions inpstS, fadD, flhD, flhC, and fliA. Analysis of the pstS mutant indicates that hilA and invasion genes are repressed by the response regulator PhoB in the absence of the Pst high-affinity inorganic phosphate uptake system. This system is required for negative control of the PhoR-PhoB two-component regulatory system, suggesting thathilA expression may be repressed by PhoR-PhoB under low extracellular inorganic phosphate conditions. FadD is required for uptake and degradation of long-chain fatty acids, and our analysis of the fadD mutant indicates that hilA is regulated by a FadD-dependent, FadR-independent mechanism. Thus, fatty acid derivatives may act as intracellular signals to regulatehilA expression. flhDC and fliAencode transcription factors required for flagellum production, motility, and chemotaxis. Complementation studies with flhCand fliA mutants indicate that FliZ, which is encoded in an operon with fliA, activates expression of hilA, linking regulation of hilA with motility. Finally, epistasis tests showed that PhoB, FadD, FliZ, SirA, and EnvZ act independently to regulate hilA expression and invasion. In summary, our screen has identified several distinct pathways that can modulate S. enterica serovar Typhimurium's ability to express hilA and invade host cells. Integration of signals from these different pathways may help restrict invasion gene expression during infection.


Sign in / Sign up

Export Citation Format

Share Document