scholarly journals Comparative Subcellular Localization Analysis of Magnetosome Proteins Reveals a Unique Localization Behavior of Mms6 Protein onto Magnetite Crystals

2016 ◽  
Vol 198 (20) ◽  
pp. 2794-2802 ◽  
Author(s):  
Atsushi Arakaki ◽  
Daiki Kikuchi ◽  
Masayoshi Tanaka ◽  
Ayana Yamagishi ◽  
Takuto Yoda ◽  
...  

ABSTRACTThe magnetosome is an organelle specialized for inorganic magnetite crystal synthesis in magnetotactic bacteria. The complex mechanism of magnetosome formation is regulated by magnetosome proteins in a stepwise manner. Protein localization is a key step for magnetosome development; however, a global study of magnetosome protein localization remains to be conducted. Here, we comparatively analyzed the subcellular localization of a series of green fluorescent protein (GFP)-tagged magnetosome proteins. The protein localizations were categorized into 5 groups (short-length linear, middle-length linear, long-length linear, cell membrane, and intracellular dispersing), which were related to the protein functions. Mms6, which regulates magnetite crystal growth, localized along magnetosome chain structures under magnetite-forming (microaerobic) conditions but was dispersed in the cell under nonforming (aerobic) conditions. Correlative fluorescence and electron microscopy analyses revealed that Mms6 preferentially localized to magnetosomes enclosing magnetite crystals. We suggest that a highly organized spatial regulation mechanism controls magnetosome protein localization during magnetosome formation in magnetotactic bacteria.IMPORTANCEMagnetotactic bacteria synthesize magnetite (Fe3O4) nanocrystals in a prokaryotic organelle called the magnetosome. This organelle is formed using various magnetosome proteins in multiple steps, including vesicle formation, magnetosome alignment, and magnetite crystal formation, to provide compartmentalized nanospaces for the regulation of iron concentrations and redox conditions, enabling the synthesis of a morphologically controlled magnetite crystal. Thus, to rationalize the complex organelle development, the localization of magnetosome proteins is considered to be highly regulated; however, the mechanisms remain largely unknown. Here, we performed comparative localization analysis of magnetosome proteins that revealed the presence of a spatial regulation mechanism within the linear structure of magnetosomes. This discovery provides evidence of a highly regulated protein localization mechanism for this bacterial organelle development.

2017 ◽  
Author(s):  
Yasuhide Osaki ◽  
Yutaka Kodama

Particle bombardment is a powerful and relatively easy method for transient expression of genes of interest in plant cells, especially those that are recalcitrant to other transformation methods. This method has facilitated numerous analyses of subcellular localization of fluorescent fusion protein constructs. Particle bombardment delivers genes to the first layer of plant tissue. In leaves of higher plants, epidermal cells are the first cell layer. Many studies have used the epidermal cell layer of onion bulb (Allium cepa) as the experimental tissue, because these cells are relatively large. However, onion epidermal cells lack developed plastids (i.e., chloroplasts), thereby precluding subcellular localization analysis of chloroplastic proteins. In this study, we developed a protocol for particle bombardment of the aquatic plant Egeria densa, and showed that it is a useful system for subcellular localization analysis of higher plant proteins. E. densa leaflets contain only two cell layers, and cells in the adaxial layer are sufficiently large for observation. The cells in both layers contain well-developed chloroplasts. We fused fluorescent proteins to conventional plant localization signals for the nucleus, cytosol, mitochondria, peroxisome, and chloroplast, and used particle bombardment to transiently express these fusion constructs in E. densa leaves. The plant subcellular localization signals functioned normally and displayed the expected distributions in transiently transformed E. densa cells, and even chloroplastic structures could be clearly visualized.


2004 ◽  
Vol 186 (14) ◽  
pp. 4441-4448 ◽  
Author(s):  
Christiaan van Ooij ◽  
Patrick Eichenberger ◽  
Richard Losick

ABSTRACT Endospores of Bacillus subtilis are encased in a thick, proteinaceous shell known as the coat, which is composed of a large number of different proteins. Here we report the identification of three previously uncharacterized coat-associated proteins, YabP, YheD, and YutH, and their patterns of subcellular localization during the process of sporulation, obtained by using fusions of the proteins to the green fluorescent protein (GFP). YabP-GFP was found to form both a shell and a ring around the center of the forespore across the short axis of the sporangium. YheD-GFP, in contrast, formed two rings around the forespore that were offset from its midpoint, before it eventually redistributed to form a shell around the developing spore. Finally, YutH-GFP initially localized to a focus at one end of the forespore, which then underwent transformation into a ring that was located adjacent to the forespore. Next, the ring became a cap at the mother cell pole of the forespore that eventually spread around the entire developing spore. Thus, each protein exhibited its own distinct pattern of subcellular localization during the course of coat morphogenesis. We concluded that spore coat assembly is a dynamic process involving diverse patterns of protein assembly and localization.


2008 ◽  
Vol 74 (15) ◽  
pp. 4944-4953 ◽  
Author(s):  
Claus Lang ◽  
Dirk Schüler

ABSTRACT The magnetosomes of magnetotactic bacteria are prokaryotic organelles consisting of a magnetite crystal bounded by a phospholipid bilayer that contains a distinct set of proteins with various functions. Because of their unique magnetic and crystalline properties, magnetosome particles are potentially useful as magnetic nanoparticles in a number of applications, which in many cases requires the coupling of functional moieties to the magnetosome membrane. In this work, we studied the use of green fluorescent protein (GFP) as a reporter for the magnetosomal localization and expression of fusion proteins in the microaerophilic Magnetospirillum gryphiswaldense by flow cytometry, fluorescence microscopy, and biochemical analysis. Although optimum conditions for high fluorescence and magnetite synthesis were mutually exclusive, we established oxygen-limited growth conditions, which supported growth, magnetite biomineralization, and GFP fluorophore formation at reasonable rates. Under these optimized conditions, we studied the subcellular localization and expression of the GFP-tagged magnetosome proteins MamC, MamF, and MamG by fluorescence microscopy and immunoblotting. While all fusions specifically localized at the magnetosome membrane, MamC-GFP displayed the strongest expression and fluorescence. MamC-GFP-tagged magnetosomes purified from cells displayed strong fluorescence, which was sensitive to detergents but stable under a wide range of temperature and salt concentrations. In summary, our data demonstrate the use of GFP as a reporter for protein localization under magnetite-forming conditions and the utility of MamC as an anchor for magnetosome-specific display of heterologous gene fusions.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3779 ◽  
Author(s):  
Yasuhide Osaki ◽  
Yutaka Kodama

Particle bombardment is a powerful and relatively easy method for transient expression of genes of interest in plant cells, especially those that are recalcitrant to other transformation methods. This method has facilitated numerous analyses of subcellular localization of fluorescent fusion protein constructs. Particle bombardment delivers genes to the first layer of plant tissue. In leaves of higher plants, epidermal cells are the first cell layer. Many studies have used the epidermal cell layer of onion bulb (Allium cepa) as the experimental tissue, because these cells are relatively large. However, onion epidermal cells lack developed plastids (i.e., chloroplasts), thereby precluding subcellular localization analysis of chloroplastic proteins. In this study, we developed a protocol for particle bombardment of the aquatic plant Egeria densa, and showed that it is a useful system for subcellular localization analysis of higher plant proteins. E. densa leaflets contain only two cell layers, and cells in the adaxial layer are sufficiently large for observation. The cells in both layers contain well-developed chloroplasts. We fused fluorescent proteins to conventional plant localization signals for the nucleus, cytosol, mitochondria, peroxisome, and chloroplast, and used particle bombardment to transiently express these fusion constructs in E. densa leaves. The plant subcellular localization signals functioned normally and displayed the expected distributions in transiently transformed E. densa cells, and even chloroplastic structures could be clearly visualized.


2004 ◽  
Vol 5 (4) ◽  
pp. 342-353 ◽  
Author(s):  
Ella Palmer ◽  
Tom Freeman

Reverse transfection microarrays were described recently as a high throughput method for studying gene function. We have investigated the use of this technology for determining the subcellular localization of proteins. Genes encoding 16 proteins with a variety of functions were placed in Gateway expression constructs with 3′ or 5′ green fluorescent protein (GFP) tags. These were then packaged in transfection reagent and spotted robotically onto a glass slide to form a reverse transfection array. HEK293T cells were grown over the surface of the array until confluent and GFP fluorescence visualized by confocal microscopy. All C-terminal fusion proteins localized to cellular compartments in accordance with previous studies and/or bioinformatic predictions. However, less than half of the N-terminal fusion proteins localized correctly. Of those that were not in concordance with the C-terminal tagged proteins, half did not exhibit expression and the remainder had differing subcellular localizations to the C-terminal fusion protein. This data indicates that N-terminal tagging with GFP adversely affects the protein localization in reverse transfection assays, whereas tagging with GFP at the C-terminal is generally better in preserving the localization of the native protein. We discuss these results in the context of developing high-throughput subcellular localization assays based on the reverse transfection array technology.


2017 ◽  
Author(s):  
Yasuhide Osaki ◽  
Yutaka Kodama

Particle bombardment is a powerful and relatively easy method for transient expression of genes of interest in plant cells, especially those that are recalcitrant to other transformation methods. This method has facilitated numerous analyses of subcellular localization of fluorescent fusion protein constructs. Particle bombardment delivers genes to the first layer of plant tissue. In leaves of higher plants, epidermal cells are the first cell layer. Many studies have used the epidermal cell layer of onion bulb (Allium cepa) as the experimental tissue, because these cells are relatively large. However, onion epidermal cells lack developed plastids (i.e., chloroplasts), thereby precluding subcellular localization analysis of chloroplastic proteins. In this study, we developed a protocol for particle bombardment of the aquatic plant Egeria densa, and showed that it is a useful system for subcellular localization analysis of higher plant proteins. E. densa leaflets contain only two cell layers, and cells in the adaxial layer are sufficiently large for observation. The cells in both layers contain well-developed chloroplasts. We fused fluorescent proteins to conventional plant localization signals for the nucleus, cytosol, mitochondria, peroxisome, and chloroplast, and used particle bombardment to transiently express these fusion constructs in E. densa leaves. The plant subcellular localization signals functioned normally and displayed the expected distributions in transiently transformed E. densa cells, and even chloroplastic structures could be clearly visualized.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1747
Author(s):  
Roya Yousefi ◽  
Kristina Jevdokimenko ◽  
Verena Kluever ◽  
David Pacheu-Grau ◽  
Eugenio F. Fornasiero

Protein homeostasis is an equilibrium of paramount importance that maintains cellular performance by preserving an efficient proteome. This equilibrium avoids the accumulation of potentially toxic proteins, which could lead to cellular stress and death. While the regulators of proteostasis are the machineries controlling protein production, folding and degradation, several other factors can influence this process. Here, we have considered two factors influencing protein turnover: the subcellular localization of a protein and its functional state. For this purpose, we used an imaging approach based on the pulse-labeling of 17 representative SNAP-tag constructs for measuring protein lifetimes. With this approach, we obtained precise measurements of protein turnover rates in several subcellular compartments. We also tested a selection of mutants modulating the function of three extensively studied proteins, the Ca2+ sensor calmodulin, the small GTPase Rab5a and the brain creatine kinase (CKB). Finally, we followed up on the increased lifetime observed for the constitutively active Rab5a (Q79L), and we found that its stabilization correlates with enlarged endosomes and increased interaction with membranes. Overall, our data reveal that both changes in protein localization and functional state are key modulators of protein turnover, and protein lifetime fluctuations can be considered to infer changes in cellular behavior.


2002 ◽  
Vol 13 (9) ◽  
pp. 3078-3095 ◽  
Author(s):  
Annette L. Boman ◽  
Paul D. Salo ◽  
Melissa J. Hauglund ◽  
Nicole L. Strand ◽  
Shelly J. Rensink ◽  
...  

Golgi-localized γ-ear homology domain, ADP-ribosylation factor (ARF)-binding proteins (GGAs) facilitate distinct steps of post-Golgi traffic. Human and yeast GGA proteins are only ∼25% identical, but all GGA proteins have four similar domains based on function and sequence homology. GGA proteins are most conserved in the region that interacts with ARF proteins. To analyze the role of ARF in GGA protein localization and function, we performed mutational analyses of both human and yeast GGAs. To our surprise, yeast and human GGAs differ in their requirement for ARF interaction. We describe a point mutation in both yeast and mammalian GGA proteins that eliminates binding to ARFs. In mammalian cells, this mutation disrupts the localization of human GGA proteins. Yeast Gga function was studied using an assay for carboxypeptidase Y missorting and synthetic temperature-sensitive lethality between GGAs andVPS27. Based on these assays, we conclude that non-Arf-binding yeast Gga mutants can function normally in membrane trafficking. Using green fluorescent protein-tagged Gga1p, we show that Arf interaction is not required for Gga localization to the Golgi. Truncation analysis of Gga1p and Gga2p suggests that the N-terminal VHS domain and C-terminal hinge and ear domains play significant roles in yeast Gga protein localization and function. Together, our data suggest that yeast Gga proteins function to assemble a protein complex at the late Golgi to initiate proper sorting and transport of specific cargo. Whereas mammalian GGAs must interact with ARF to localize to and function at the Golgi, interaction between yeast Ggas and Arf plays a minor role in Gga localization and function.


2005 ◽  
Vol 187 (3) ◽  
pp. 829-839 ◽  
Author(s):  
Poney Chiang ◽  
Marc Habash ◽  
Lori L. Burrows

ABSTRACT The opportunistic pathogen Pseudomonas aeruginosa expresses polar type IV pili (TFP), which are responsible for adhesion to various materials and twitching motility on surfaces. Twitching occurs by alternate extension and retraction of TFP, which arise from assembly and disassembly of pilin subunits at the base of the pilus. The ATPase PilB promotes pilin assembly, while the ATPase PilT or PilU or both promote pilin dissociation. Fluorescent fusions to two of the three ATPases (PilT and PilU) were functional, as shown by complementation of the corresponding mutants. PilB and PilT fusions localized to both poles, while PilU fusions localized only to the piliated pole. To identify the portion of the ATPases required for localization, sequential C-terminal deletions of PilT and PilU were generated. The conserved His and Walker B boxes were dispensable for polar localization but were required for twitching motility, showing that localization and function could be uncoupled. Truncated fusions that retained polar localization maintained their distinctive distribution patterns. To dissect the cellular factors involved in establishing polarity, fusion protein localization was monitored with a panel of TFP mutants. The localization of yellow fluorescent protein (YFP)-PilT and YFP-PilU was independent of the subunit PilA, other TFP ATPases, and TFP-associated proteins previously shown to be associated with the membrane or exhibiting polar localization. In contrast, YFP-PilB exhibited diffuse cytoplasmic localization in a pilC mutant, suggesting that PilC is required for polar localization of PilB. Finally, localization studies performed with fluorescent ATPase chimeras of PilT and PilU demonstrated that information responsible for the characteristic localization patterns of the ATPases likely resides in their N termini.


Sign in / Sign up

Export Citation Format

Share Document