scholarly journals ylm Has More than a (Z Anchor) Ring to It!

2020 ◽  
Vol 203 (3) ◽  
Author(s):  
Maria L. White ◽  
Prahathees J. Eswara

ABSTRACT The division and cell wall (dcw) cluster is a highly conserved region of the bacterial genome consisting of genes that encode several cell division and cell wall synthesis factors, including the central division protein FtsZ. The region immediately downstream of ftsZ encodes the ylm genes and is conserved across diverse lineages of Gram-positive bacteria and Cyanobacteria. In some organisms, this region remains part of the dcw cluster, but in others, it appears as an independent operon. A well-studied protein coded from this region is the positive FtsZ regulator SepF (YlmF), which anchors FtsZ to the membrane. Recent developments have shed light on the importance of SepF in a range of species. Additionally, new studies are highlighting the importance of the other conserved genes in this neighborhood. In this minireview, we aim to bring together the current research linking the ylm region to cell division and highlight further questions surrounding these conserved genes.

2020 ◽  
Vol 203 (2) ◽  
pp. e00463-20
Author(s):  
Amit Bhambhani ◽  
Isabella Iadicicco ◽  
Jules Lee ◽  
Syed Ahmed ◽  
Max Belfatto ◽  
...  

ABSTRACTPrevious work identified gene product 56 (gp56), encoded by the lytic bacteriophage SP01, as being responsible for inhibition of Bacillus subtilis cell division during its infection. Assembly of the essential tubulin-like protein FtsZ into a ring-shaped structure at the nascent site of cytokinesis determines the timing and position of division in most bacteria. This FtsZ ring serves as a scaffold for recruitment of other proteins into a mature division-competent structure permitting membrane constriction and septal cell wall synthesis. Here, we show that expression of the predicted 9.3-kDa gp56 of SP01 inhibits later stages of B. subtilis cell division without altering FtsZ ring assembly. Green fluorescent protein-tagged gp56 localizes to the membrane at the site of division. While its localization does not interfere with recruitment of early division proteins, gp56 interferes with the recruitment of late division proteins, including Pbp2b and FtsW. Imaging of cells with specific division components deleted or depleted and two-hybrid analyses suggest that gp56 localization and activity depend on its interaction with FtsL. Together, these data support a model in which gp56 interacts with a central part of the division machinery to disrupt late recruitment of the division proteins involved in septal cell wall synthesis.IMPORTANCE Studies over the past decades have identified bacteriophage-encoded factors that interfere with host cell shape or cytokinesis during viral infection. The phage factors causing cell filamentation that have been investigated to date all act by targeting FtsZ, the conserved prokaryotic tubulin homolog that composes the cytokinetic ring in most bacteria and some groups of archaea. However, the mechanisms of several phage factors that inhibit cytokinesis, including gp56 of bacteriophage SP01 of Bacillus subtilis, remain unexplored. Here, we show that, unlike other published examples of phage inhibition of cytokinesis, gp56 blocks B. subtilis cell division without targeting FtsZ. Rather, it utilizes the assembled FtsZ cytokinetic ring to localize to the division machinery and to block recruitment of proteins needed for septal cell wall synthesis.


mBio ◽  
2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Karin Schubert ◽  
Boris Sieger ◽  
Fabian Meyer ◽  
Giacomo Giacomelli ◽  
Kati Böhm ◽  
...  

ABSTRACT Members of the genus Mycobacterium are the most prevalent cause of infectious diseases. Mycobacteria have a complex cell envelope containing a peptidoglycan layer and an additional arabinogalactan polymer to which a mycolic acid bilayer is linked; this complex, multilayered cell wall composition (mAGP) is conserved among all CMN group bacteria. The arabinogalactan and mycolic acid synthesis pathways constitute effective drug targets for tuberculosis treatment. Ethambutol (EMB), a classical antituberculosis drug, inhibits the synthesis of the arabinose polymer. Although EMB acts bacteriostatically, its underlying molecular mechanism remains unclear. Here, we used Corynebacterium glutamicum and Mycobacterium phlei as model organisms to study the effects of EMB at the single-cell level. Our results demonstrate that EMB specifically blocks apical cell wall synthesis, but not cell division, explaining the bacteriostatic effect of EMB. Furthermore, the data suggest that members of the family Corynebacterineae have two dedicated machineries for cell elongation (elongasome) and cytokinesis (divisome). IMPORTANCE Antibiotic treatment of bacterial pathogens has contributed enormously to the increase in human health. Despite the apparent importance of antibiotic treatment of bacterial infections, surprisingly little is known about the molecular functions of antibiotic actions in the bacterial cell. Here, we analyzed the molecular effects of ethambutol, a first-line antibiotic against infections caused by members of the genus Mycobacterium. We find that this drug selectively blocks apical cell growth but still allows for effective cytokinesis. As a consequence, cells survive ethambutol treatment and adopt a pneumococcal cell growth mode with cell wall synthesis only at the site of cell division. However, combined treatment of ethambutol and beta-lactam antibiotics acts synergistically and effectively stops cell proliferation. IMPORTANCE Antibiotic treatment of bacterial pathogens has contributed enormously to the increase in human health. Despite the apparent importance of antibiotic treatment of bacterial infections, surprisingly little is known about the molecular functions of antibiotic actions in the bacterial cell. Here, we analyzed the molecular effects of ethambutol, a first-line antibiotic against infections caused by members of the genus Mycobacterium. We find that this drug selectively blocks apical cell growth but still allows for effective cytokinesis. As a consequence, cells survive ethambutol treatment and adopt a pneumococcal cell growth mode with cell wall synthesis only at the site of cell division. However, combined treatment of ethambutol and beta-lactam antibiotics acts synergistically and effectively stops cell proliferation.


2019 ◽  
Author(s):  
Carolin M Kobras ◽  
Hannah Piepenbreier ◽  
Jennifer Emenegger ◽  
Andre Sim ◽  
Georg Fritz ◽  
...  

ABSTRACTResistance against cell wall-active antimicrobial peptides in bacteria is often mediated by transporters. In low GC-content Gram-positive bacteria, a wide-spread type of such transporters are the BceAB-like systems, which frequently provide a high level of resistance against peptide antibiotics that target intermediates of the lipid II cycle of cell wall synthesis. How a transporter can offer protection from drugs that are active on the cell surface, however, has presented researchers with a conundrum. Multiple theories have been discussed, ranging from removal of the peptides from the membrane, internalisation of the drug for degradation, to removal of the cellular target rather than the drug itself. To resolve this much-debated question, we here investigated the mode of action of the transporter BceAB of Bacillus subtilis. We show that it does not inactivate or import its substrate antibiotic bacitracin. Moreover, we present evidence that the critical factor driving transport activity is not the drug itself, but instead the concentration of drug-target complexes in the cell. Our results, together with previously reported findings, lead us to propose that BceAB-type transporters act by transiently freeing lipid II cycle intermediates from the inhibitory grip of antimicrobial peptides, and thus provide resistance through target protection of cell wall synthesis. Target protection has so far only been reported for resistance against antibiotics with intracellular targets, such as the ribosome. However, this mechanism offers a plausible explanation for the use of transporters as resistance determinants against cell wall-active antibiotics in Gram-positive bacteria where cell wall synthesis lacks the additional protection of an outer membrane.


Microbiology ◽  
2007 ◽  
Vol 153 (10) ◽  
pp. 3593-3607 ◽  
Author(s):  
Stijn van der Veen ◽  
Torsten Hain ◽  
Jeroen A. Wouters ◽  
Hamid Hossain ◽  
Willem M. de Vos ◽  
...  

2008 ◽  
Vol 190 (9) ◽  
pp. 3283-3292 ◽  
Author(s):  
Michal Letek ◽  
Efrén Ordóñez ◽  
José Vaquera ◽  
William Margolin ◽  
Klas Flärdh ◽  
...  

ABSTRACT The actinomycete Corynebacterium glutamicum grows as rod-shaped cells by zonal peptidoglycan synthesis at the cell poles. In this bacterium, experimental depletion of the polar DivIVA protein (DivIVACg) resulted in the inhibition of polar growth; consequently, these cells exhibited a coccoid morphology. This result demonstrated that DivIVA is required for cell elongation and the acquisition of a rod shape. DivIVA from Streptomyces or Mycobacterium localized to the cell poles of DivIVACg-depleted C. glutamicum and restored polar peptidoglycan synthesis, in contrast to DivIVA proteins from Bacillus subtilis or Streptococcus pneumoniae, which localized at the septum of C. glutamicum. This confirmed that DivIVAs from actinomycetes are involved in polarized cell growth. DivIVACg localized at the septum after cell wall synthesis had started and the nucleoids had already segregated, suggesting that in C. glutamicum DivIVA is not involved in cell division or chromosome segregation.


1967 ◽  
Vol 13 (4) ◽  
pp. 341-350 ◽  
Author(s):  
K. L. Chung

The pattern of cell wall synthesis as measured by the incorporation of tritiated alanine into the cell wall of Bacillus cereus, and the number of synthesizing sites in the cell wall were studied by the direct and the reverse autoradiographic labelling methods.In the absence of chloramphenicol, the new cell wall was initiated at two or three segments, and later increased to four or five segments which continued to elongate but not to increase in number until the bacilli had made preparation for cell division. Shortly before the centripetal growth of the cell wall and constriction to separate daughter cells, two to three more new wall-segments were added to those already present. The second and third generation cells retained some old wall-segments from the first-generation mother, which remained as discrete clusters of grains, and could easily be distinguished from the new segments.In the presence of chloramphenicol, the new wall was initiated at 8 to 10 sites. Further incubation resulted in the uniform incorporation of labels at multiple sites along the entire cell length.The patterns of new wall replication as studied by the two methods were compared. To account for the difference in synthesizing sites when chloramphenicol is present, it is suggested that the cells have either used the maximum number of sites or have completely bypassed all the sites and allowed the tritiated alanine to diffuse into the wall to become incorporated.


2020 ◽  
Vol 117 (38) ◽  
pp. 23879-23885 ◽  
Author(s):  
Lindsey S. Marmont ◽  
Thomas G. Bernhardt

Cell division in bacteria is mediated by a multiprotein assembly called the divisome. A major function of this machinery is the synthesis of the peptidoglycan (PG) cell wall that caps the daughter poles and prevents osmotic lysis of the newborn cells. Recent studies have implicated a complex of FtsW and FtsI (FtsWI) as the essential PG synthase within the divisome; however, how PG polymerization by this synthase is regulated and coordinated with other activities within the machinery is not well understood. Previous results have implicated a conserved subcomplex of division proteins composed of FtsQ, FtsL, and FtsB (FtsQLB) in the regulation of FtsWI, but whether these proteins act directly as positive or negative regulators of the synthase has been unclear. To address this question, we purified a five-memberPseudomonas aeruginosadivision complex consisting of FtsQLB-FtsWI. The PG polymerase activity of this complex was found to be greatly stimulated relative to FtsWI alone. Purification of complexes lacking individual components indicated that FtsL and FtsB are sufficient for FtsW activation. Furthermore, support for this activity being important for the cellular function of FtsQLB was provided by the identification of two division-defective variants of FtsL that still form normal FtsQLB-FtsWI complexes but fail to activate PG synthesis. Thus, our results indicate that the conserved FtsQLB complex is a direct activator of PG polymerization by the FtsWI synthase and thereby define an essential regulatory step in the process of bacterial cell division.


Microbiology ◽  
2008 ◽  
Vol 154 (3) ◽  
pp. 725-735 ◽  
Author(s):  
Choong-Min Kang ◽  
Seeta Nyayapathy ◽  
Jung-Yeon Lee ◽  
Joo-Won Suh ◽  
Robert N. Husson

1970 ◽  
Vol 16 (8) ◽  
pp. 661-665 ◽  
Author(s):  
T. J. Trust

A Sarcina sp. has been isolated which is antagonistic to the growth of a number of Gram-positive bacteria when grown on solid media. The morphological and biochemical characteristics of the organism are described. The biological properties of the inhibitor have been examined. The data suggest that the inhibitor may interfere with cell wall synthesis.


Sign in / Sign up

Export Citation Format

Share Document