scholarly journals Proteins Associated with the Myxococcus xanthus Extracellular Matrix

2007 ◽  
Vol 189 (21) ◽  
pp. 7634-7642 ◽  
Author(s):  
Patrick D. Curtis ◽  
James Atwood ◽  
Ron Orlando ◽  
Lawrence J. Shimkets

ABSTRACT Fruiting body formation of Myxococcus xanthus, like biofilm formation of many other organisms, involves the production of an extracellular matrix (ECM). While the polysaccharide component has been studied, the protein component has been largely unexplored. Proteins associated with the ECM were solubilized from purified ECM by boiling with sodium dodecyl sulfate and were identified by liquid chromatography-tandem mass spectrometry of tryptic fragments. The ECM is enriched in proteins of novel function; putative functions were assigned for only 5 of the 21 proteins. Thirteen putative ECM proteins had lipoprotein secretion signals. The genes for many ECM proteins were disrupted in the wild-type (WT), fibA, and pilA backgrounds. Disruption of the MXAN4860 gene had no effect in the WT or fibA background but in the pilA background resulted in a 24-h delay in aggregation and sporulation compared to its parent. The results of this study show that the M. xanthus ECM proteome is diverse and novel.

2018 ◽  
Vol 314 (3) ◽  
pp. E191-E200 ◽  
Author(s):  
Anu Alice Thomas ◽  
Biao Feng ◽  
Subrata Chakrabarti

noncoding RNAs (lncRNAs) have gained widespread interest due to their prevailing presence in various diseases. lncRNA ANRIL (a. k. a. CDKN2B-AS1) is located on human chromosome 9 (p21.3) and transcribed in opposite direction to the INK4b-ARF-INK4a gene cluster. It has been identified as a highly susceptible region for diseases such as coronary artery diseases and type 2 diabetes. Here, we explored its regulatory role in diabetic nephropathy (DN) and diabetic cardiomyopathy (DCM) in association with epigenetic modifiers p300 and polycomb repressive complex 2 (PRC2) complex. We used an ANRIL-knockout (ANRILKO) mouse model for this study. The wild-type and ANRILKO animals with or without streptozotocin-induced diabetes were monitored for 2 min. At the end of the time point, urine and tissues were collected. The tissues were measured for fibronectin (FN), type IV collagen (Col1α4), and VEGF mRNA and protein expressions. Renal function was determined by the measurement of 24-h urine volume and albumin/creatinine ratio at euthanasia. Renal and cardiac structures were investigated using periodic acid-Schiff stain and/or immunohistochemical analysis. Elevated expressions of extracellular matrix (ECM) proteins were prevented in ANRILKO diabetic animals. Furthermore, ANRILKO had a protective effect on diabetic mouse kidneys, as evidenced by lowering of urine volume and urine albumin levels in comparison with the wild-type diabetic animals. These alterations regulated by ANRIL may be mediated by p300 and enhancer of zeste 2 (EZH2) of the PRC2 complex. Our study concludes that ANRIL regulates functional and structural alterations in the kidneys and hearts in diabetes through controlling the expressions of ECM proteins and VEGF.


1982 ◽  
Vol 152 (1) ◽  
pp. 462-470 ◽  
Author(s):  
L J Shimkets ◽  
D Kaiser

Murein (peptidoglycan) components are able to rescue sporulation in certain sporulation-defective mutants of Myxococcus xanthus. N-Acetylglucosamine, N-acetylmuramic acid, diaminopimelic acid, and D-alanine each increase the number of spores produced by SpoC mutants. When all four components are included they have a synergistic effect, raising the number of spores produced by SpoC mutants to the wild-type level. Murein-rescued spores are resistant to heat and sonic oscillation and germinate when plated on a nutrient-rich medium. They appear to be identical to fruiting body spores in their ultrastructure, in their protein composition, and in their resistance to boiling sodium dodecyl sulfate. Murein rescue of sporulation, like fruiting body sporulation, requires high cell density, a low nutrient level, and a solid surface.


2016 ◽  
Vol 198 (19) ◽  
pp. 2682-2691 ◽  
Author(s):  
Yi Wang ◽  
Sok Ho Kim ◽  
Ramya Natarajan ◽  
Jason E. Heindl ◽  
Eric L. Bruger ◽  
...  

ABSTRACTIn bacteria, the functions of polyamines, small linear polycations, are poorly defined, but these metabolites can influence biofilm formation in several systems. Transposon insertions in an ornithine decarboxylase (odc) gene inAgrobacterium tumefaciens, predicted to direct synthesis of the polyamine putrescine from ornithine, resulted in elevated cellulose. Null mutants forodcgrew somewhat slowly in a polyamine-free medium but exhibited increased biofilm formation that was dependent on cellulose production. Spermidine is an essential metabolite inA. tumefaciensand is synthesized from putrescine inA. tumefaciensvia the stepwise actions of carboxyspermidine dehydrogenase (CASDH) and carboxyspermidine decarboxylase (CASDC). Exogenous addition of either putrescine or spermidine to theodcmutant returned biofilm formation to wild-type levels. Low levels of exogenous spermidine restored growth to CASDH and CASDC mutants, facilitating weak biofilm formation, but this was dampened with increasing concentrations. Norspermidine rescued growth for theodc, CASDH, and CASDC mutants but did not significantly affect their biofilm phenotypes, whereas in the wild type, it stimulated biofilm formation and depressed spermidine levels. Theodcmutant produced elevated levels of cyclic diguanylate monophosphate (c-di-GMP), exogenous polyamines modulated these levels, and expression of a c-di-GMP phosphodiesterase reversed the enhanced biofilm formation. Prior work revealed accumulation of the precursors putrescine and carboxyspermidine in the CASDH and CASDC mutants, respectively, but unexpectedly, both mutants accumulated homospermidine; here, we show that this requires a homospermidine synthase (hss) homologue.IMPORTANCEPolyamines are small, positively charged metabolites that are nearly ubiquitous in cellular life. They are often essential in eukaryotes and more variably in bacteria. Polyamines have been reported to influence the surface-attached biofilm formation of several bacteria. InAgrobacterium tumefaciens, mutants with diminished levels of the polyamine spermidine are stimulated for biofilm formation, and exogenous provision of spermidine decreases biofilm formation. Spermidine is also essential forA. tumefaciensgrowth, but the related polyamine norspermidine exogenously rescues growth and does not diminish biofilm formation, revealing that the growth requirement and biofilm control are separable. Polyamine control of biofilm formation appears to function via effects on the cellular second messenger cyclic diguanylate monophosphate, regulating the transition from a free-living to a surface-attached lifestyle.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Kota Kera ◽  
Yuichiro Yoshizawa ◽  
Takehiro Shigehara ◽  
Tatsuya Nagayama ◽  
Masaru Tsujii ◽  
...  

Abstract In response to environmental stress the model cyanobacterium, Synechocystis sp. PCC6803 can switch from a planktonic state to autoaggregation and biofilm formation. The precise mechanism of this transition remains unknown. Here we investigated the role of a candidate two-component regulatory system (TCS) in controlling morphological changes, as a way to understand the intermediate molecular steps that are part of the signaling pathway. A bacterial two-hybrid assay showed that the response regulator Rre6 formed a TCS together with a split histidine kinase consisting of Hik36 and Hik43. Individual disruption mutants displayed autoaggregation in a static culture. In contrast, unlike in the wild type, high salinity did not induce biofilm formation in Δhik36, Δhik43 and Δrre6. The expression levels of exopolysaccharide (EPS) production genes were higher in Δhik36 and Δhik43, compared with the wild type, but lower in Δrre6, suggesting that the TCS regulated EPS production in Synechocystis. Rre6 interacted physically with the motor protein PilT2, that is a component of the type IV pilus system. This interaction was enhanced in a phosphomimic version of Rre6. Taken together, Hik36–Hik43–Rre6 function as an upstream component of the pili-related signal transduction cascade and control the prevention of cell adhesion and biofilm formation.


Biofilms ◽  
2004 ◽  
Vol 1 (2) ◽  
pp. 91-99 ◽  
Author(s):  
S. R. Schooling ◽  
U. K. Charaf ◽  
D. G. Allison ◽  
P. Gilbert

Biofilms are often considered as localized zones of high cell density. Quorum sensing provides a means for control of population processes and has been implicated in the regulation of biofilm activities. We present a role for quorum sensing in programmed detachment and dispersal processes. Biofilms of Pseudomonas aeruginosa PAO1 and its isogenic homoserine lactone (HSL) mutant P. aeruginosa PAO-JP2 were grown in batch culture on glass substrata; differences were found in the rate and extent of formation of biofilm. Climax communities were observed for PAO1 at 24 h. These were later accompanied by foaming, a drop in the surface tension of culture media and dispersal of the biofilm, after which no subsequent biofilm accretion occurred. PAO-JP2 cultures reformed biofilm post-detachment and did not foam. Prevention of biofilm reformation in the wild type was related to some component excreted into the culture medium. Rhamnolipid, a biosurfactant regulated by quorum sensing, was detected in PAO1 cultures. When rhamnolipid was added to freshly inoculated substrata, biofilm formation was inhibited. At 20 h, PAO1 biofilms were transferred to medium with added rhamnolipid: biofilm was relatively unaffected. Biofilm events were also studied in medium supplemented with N-butyryl-L-homoserine lactone, which is involved in the regulation of rhamnolipid synthesis. Both strains exhibited similar trends of rapid biofilm formation and dramatic changes in the rate and extent of biofilm accretion. In both cases, there was premature foaming, lowered surface tension and elevated rhamnolipid levels. A role for HSLs in maintenance of biofilm and events leading to dispersion of cells is proposed. This role would encompass dispersion but not necessarily detachment of cells from biofilm and supports a new function for rhamnolipid in pathogenesis, whereby rhamnolipid would promote the dissemination of cells from a nidus of infection.


2010 ◽  
Vol 74 (2) ◽  
pp. 229-249 ◽  
Author(s):  
Emilia M. F. Mauriello ◽  
Tâm Mignot ◽  
Zhaomin Yang ◽  
David R. Zusman

SUMMARY In bacteria, motility is important for a wide variety of biological functions such as virulence, fruiting body formation, and biofilm formation. While most bacteria move by using specialized appendages, usually external or periplasmic flagella, some bacteria use other mechanisms for their movements that are less well characterized. These mechanisms do not always exhibit obvious motility structures. Myxococcus xanthus is a motile bacterium that does not produce flagella but glides slowly over solid surfaces. How M. xanthus moves has remained a puzzle that has challenged microbiologists for over 50 years. Fortunately, recent advances in the analysis of motility mutants, bioinformatics, and protein localization have revealed likely mechanisms for the two M. xanthus motility systems. These results are summarized in this review.


2006 ◽  
Vol 188 (9) ◽  
pp. 3246-3256 ◽  
Author(s):  
Poorna Viswanathan ◽  
Mitchell Singer ◽  
Lee Kroos

ABSTRACT Starvation-induced development of Myxococcus xanthus is an excellent model for biofilm formation because it involves cell-cell signaling to coordinate formation of multicellular mounds, gene expression, and cellular differentiation into spores. The role of σD, an alternative σ factor important for viability in stationary phase and for stress responses, was investigated during development by measuring signal production, gene expression, and sporulation of a sigD null mutant alone and upon codevelopment with wild-type cells or signaling mutants. The sigD mutant responded to starvation by inducing (p)ppGpp synthesis normally but was impaired for production of A-signal, an early cell density signal, and for production of the morphogenetic C-signal. Induction of early developmental genes was greatly reduced, and expression of those that depend on A-signal was not restored by codevelopment with wild-type cells, indicating that σD is needed for cellular responses to A-signal. Despite these early developmental defects, the sigD mutant responded to C-signal supplied by codeveloping wild-type cells by inducing a subset of late developmental genes. σD RNA polymerase is dispensable for transcription of this subset, but a distinct regulatory class, which includes genes essential for sporulation, requires σD RNA polymerase or a gene under its control, cell autonomously. The level of sigD transcript in a relA mutant during growth is much lower than in wild-type cells, suggesting that (p)ppGpp positively regulates sigD transcription in growing cells. The sigD transcript level drops in wild-type cells after 20 min of starvation and remains low after 40 min but rises in a relA mutant after 40 min, suggesting that (p)ppGpp negatively regulates sigD transcription early in development. We conclude that σD synthesized during growth occupies a position near the top of a regulatory hierarchy governing M. xanthus development, analogous to σ factors that control biofilm formation of other bacteria.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245667
Author(s):  
Hee Young Ju ◽  
Ji Won Lee ◽  
Hee Won Cho ◽  
Ju Kyung Hyun ◽  
Youngeun Ma ◽  
...  

Background Large inter-individual variations in drug metabolism pose a challenge in determining 6-mercaptopurine (6MP) doses. As the last product of 6MP metabolism, DNA-thioguanine nucleotide (DNA-TGN) could reflect the efficacy of 6MP, especially in patients harboring variants in the 6MP metabolism pathway. The aim of this study was to investigate the clinical significance of DNA-TGN monitoring in Korean pediatric acute lymphoblastic leukemia (ALL) patients, focusing on the NUDT15 genotype. Methods The subjects of this study were patients who underwent ALL treatment with 6MP. Tests for the NUDT15 and TPMT genotypes were performed, and prospective DNA-TGN and erythrocyte TGN samples were collected after two weeks or more of 6MP treatment. DNA-TGN was quantified using the liquid chromatography-tandem mass spectrometry method. Results A total of 471 DNA-TGN measurements in 71 patients were analyzed, which ranged from 1.0 to 903.1 fmol thioguanine/μg DNA. The 6MP intensity demonstrated a significant relationship with DNA-TGN concentration (P<0.001). Patients harboring NUDT15 variants were treated with a lower dose of 6MP (P<0.001); however, there was no significant difference in DNA-TGN concentration when compared to patients carrying wild-type NUDT15 (P = 0.261). These patients also presented higher variation in DNA-TGN levels (P = 0.002) and DNA-TGN/6MP intensity (P = 0.019) compared to patients carrying wild-type NUDT15. DNA-TGN concentration did not show a significant correlation with WBC count (P = 0.093). Conclusions Patients harboring NUDT15 variants demonstrated similar DNA-TGN concentrations even at low doses of 6MP and showed high variability in DNA-TGN. Particularly in patients with NUDT15 variants who need a reduced 6MP dose, DNA-TGN could be applied as a useful marker to monitor the therapeutic effect of 6MP.


2019 ◽  
Vol 109 (7) ◽  
pp. 1171-1183 ◽  
Author(s):  
Wei Guo ◽  
Jie Gao ◽  
Qingshan Chen ◽  
Bojun Ma ◽  
Yuan Fang ◽  
...  

The global regulator Crp-like protein (Clp) is positively involved in the production of virulence factors in some of the Xanthomonas spp. However, the functional importance of Clp in X. axonopodis pv. glycines has not been investigated previously. Here, we showed that deletion of clp led to significant reduction in the virulence of X. axonopodis pv. glycines in soybean, which was highly correlated with the drastic reductions in carbohydrates utilization, extracellular polysaccharide (EPS) production, biofilm formation, cell motility, and synthesis of cell wall degrading enzymes (CWDEs). These significantly impaired properties in the clp mutant were completely rescued by a single-copy integration of the wild-type clp into the mutant chromosome via homologous recombination. Interestingly, overexpression of clp in the wild-type strain resulted in significant increases in cell motility and synthesis of the CWDEs. To our surprise, significant reductions in carbohydrates utilization, EPS production, biofilm formation, and the protease activity were observed in the wild-type strain overexpressing clp, suggesting that Clp also plays a negative role in these properties. Furthermore, quantitative reverse transcription polymerase chain reaction analysis suggested that clp was positively regulated by the diffusible signal factor-mediated quorum-sensing system and the HrpG/HrpX cascade. Taken together, our results reveal that Clp functions as both activator and repressor in multiple biological processes in X. axonopodis pv. glycines that are essential for its full virulence.


2000 ◽  
Vol 182 (23) ◽  
pp. 6614-6621 ◽  
Author(s):  
Kyungyun Cho ◽  
Anke Treuner-Lange ◽  
Kathleen A. O'Connor ◽  
David R. Zusman

ABSTRACT Myxococcus xanthus is a gram-negative bacterium which has a complex life cycle that includes multicellular fruiting body formation. Frizzy mutants are characterized by the formation of tangled filaments instead of hemispherical fruiting bodies on fruiting agar. Mutations in the frz genes have been shown to cause defects in directed motility, which is essential for both vegetative swarming and fruiting body formation. In this paper, we report the discovery of a new gene, called frgA (forfrz-related gene), which confers a subset of the frizzy phenotype when mutated. The frgA null mutant showed reduced swarming and the formation of frizzy aggregates on fruiting agar. However, this mutant still displayed directed motility in a spatial chemotaxis assay, whereas the majority offrz mutants fail to show directed movements in this assay. Furthermore, the frizzy phenotype of the frgA mutant could be complemented extracellularly by wild-type cells or strains carrying non-frz mutations. The phenotype of the frgAmutant is similar to that of the abcA mutant and suggests that both of these mutants could be defective in the production or export of extracellular signals required for fruiting body formation rather than in the sensing of such extracellular signals. ThefrgA gene encodes a large protein of 883 amino acids which lacks homologues in the databases. The frgA gene is part of an operon which includes two additional genes, frgBand frgC. The frgB gene encodes a putative histidine protein kinase, and the frgC gene encodes a putative response regulator. The frgB and frgCnull mutants, however, formed wild-type fruiting bodies.


Sign in / Sign up

Export Citation Format

Share Document