scholarly journals Regulation of the yjjQ-bglJ Operon, Encoding LuxR-Type Transcription Factors, and the Divergent yjjP Gene by H-NS and LeuO

2007 ◽  
Vol 190 (3) ◽  
pp. 926-935 ◽  
Author(s):  
Thomas Stratmann ◽  
S. Madhusudan ◽  
Karin Schnetz

ABSTRACT The yjjQ and bglJ genes encode LuxR-type transcription factors conserved in several enterobacterial species. YjjQ is a potential virulence factor in avian pathogenic Escherichia coli. BglJ counteracts the silencing of the bgl (β-glucoside) operon by H-NS in E. coli K-12. Here we show that yjjQ and bglJ form an operon carried by E. coli K-12, whose expression is repressed by the histone-like nucleoid structuring (H-NS) protein. The LysR-type transcription factor LeuO counteracts this repression. Furthermore, the yjjP gene, encoding a membrane protein of unknown function and located upstream in divergent orientation to the yjjQ-bglJ operon, is likewise repressed by H-NS. Mapping of the promoters as well as the H-NS and LeuO binding sites within the 555-bp intergenic region revealed that H-NS binds to the center of the AT-rich regulatory region and distal to the divergent promoters. LeuO sites map to the center and to positions distal to the yjjQ promoters, while one LeuO binding site overlaps with the divergent yjjP promoter. This latter LeuO site is required for full derepression of the yjjQ promoters. The arrangement of regulatory sites suggests that LeuO restructures the nucleoprotein complex formed by H-NS. Furthermore, the data support the conclusion that LeuO, whose expression is likewise repressed by H-NS and which is a virulence factor in Salmonella enterica, is a master regulator that among other loci, also controls the yjjQ-bglJ operon and thus indirectly the presumptive targets of YjjQ and BglJ.

2021 ◽  
Vol 12 ◽  
Author(s):  
Tomohiro Shimada ◽  
Hiroshi Ogasawara ◽  
Ikki Kobayashi ◽  
Naoki Kobayashi ◽  
Akira Ishihama

The identification of regulatory targets of all transcription factors (TFs) is critical for understanding the entire network of genome regulation. A total of approximately 300 TFs exist in the model prokaryote Escherichia coli K-12, but the identification of whole sets of their direct targets is impossible with use of in vivo approaches. For this end, the most direct and quick approach is to identify the TF-binding sites in vitro on the genome. We then developed and utilized the gSELEX screening system in vitro for identification of more than 150 E. coli TF-binding sites along the E. coli genome. Based on the number of predicted regulatory targets, we classified E. coli K-12 TFs into four groups, altogether forming a hierarchy ranging from a single-target TF (ST-TF) to local TFs, global TFs, and nucleoid-associated TFs controlling as many as 1,000 targets. Using the collection of purified TFs and a library of genome DNA segments from a single and the same E. coli K-12, we identified here a total of 11 novel ST-TFs, CsqR, CusR, HprR, NorR, PepA, PutA, QseA, RspR, UvrY, ZraR, and YqhC. The regulation of single-target promoters was analyzed in details for the hitherto uncharacterized QseA and RspR. In most cases, the ST-TF gene and its regulatory target genes are adjacently located on the E. coli K-12 genome, implying their simultaneous transfer in the course of genome evolution. The newly identified 11 ST-TFs and the total of 13 hitherto identified altogether constitute the minority group of TFs in E. coli K-12.


2018 ◽  
Vol 19 (10) ◽  
pp. 3272 ◽  
Author(s):  
Manel Benhassine ◽  
Sylvain Guérin

Because it accounts for 70% of all eye cancers, uveal melanoma (UM) is therefore the most common primary ocular malignancy. In this study, we investigated the molecular mechanisms leading to the aberrant expression of the gene encoding the serotonin receptor 2B (HTR2B), one of the most discriminating among the candidates from the class II gene signature, in metastatic and non-metastatic UM cell lines. Transfection analyses revealed that the upstream regulatory region of the HTR2B gene contains a combination of alternative positive and negative regulatory elements functional in HTR2B− but not in HTR23B+ UM cells. We demonstrated that both the transcription factors nuclear factor I (NFI) and Runt-related transcription factor I (RUNX1) interact with regulatory elements from the HTR2B gene to either activate (NFI) or repress (RUNX1) HTR2B expression in UM cells. The results of this study will help understand better the molecular mechanisms accounting for the abnormal expression of the HTR2B gene in uveal melanoma.


2006 ◽  
Vol 188 (21) ◽  
pp. 7449-7456 ◽  
Author(s):  
Douglas F. Browning ◽  
David J. Lee ◽  
Alan J. Wolfe ◽  
Jeffrey A. Cole ◽  
Stephen J. W. Busby

ABSTRACT The Escherichia coli K-12 nrf operon promoter can be activated fully by the FNR protein (regulator of fumarate and nitrate reduction) binding to a site centered at position −41.5. FNR-dependent transcription is suppressed by integration host factor (IHF) binding at position −54, and this suppression is counteracted by binding of the NarL or NarP response regulator at position −74.5. The E. coli acs gene is transcribed from a divergent promoter upstream from the nrf operon promoter. Transcription from the major acsP2 promoter is dependent on the cyclic AMP receptor protein and is modulated by IHF and Fis binding at multiple sites. We show that IHF binding to one of these sites, located at position −127 with respect to the nrf promoter, has a positive effect on nrf promoter activity. This activation is dependent on the face of the DNA helix, independent of IHF binding at other locations, and found only when NarL/NarP are not bound at position −74.5. Binding of NarL/NarP appears to insulate the nrf promoter from the effects of IHF. The acs-nrf regulatory region is conserved in other pathogenic E. coli strains and related enteric bacteria but differs in Salmonella enterica serovar Typhimurium.


2007 ◽  
Vol 75 (7) ◽  
pp. 3325-3334 ◽  
Author(s):  
Nicola Holden ◽  
Makrina Totsika ◽  
Lynn Dixon ◽  
Kirsteen Catherwood ◽  
David L. Gally

ABSTRACT Adherence of uropathogenic Escherichia coli to host tissue is required for infection and is mediated by fimbriae, such as pyelonephritis-associated pili (Pap). Expression of P fimbriae is regulated by phase variation, and to date, phase transition frequencies have been measured only for pap regulatory region constructs integrated into the E. coli K-12 chromosome. The aim of this work was to measure P phase transition frequencies in clinical isolates for the first time, including frequencies for the sequenced strain E. coli CFT073. P fimbriation and associated phase transition frequencies were measured for two E. coli clinical isolates and compared with levels for homologous pap constructs in E. coli K-12. Fimbriation and off-to-on transition frequencies were always higher in the clinical isolate. It was concluded that the regulatory inputs controlling papI expression are likely to be different in E. coli CFT073 and E. coli K-12 as (i) phase variation could be stimulated in E. coli K-12 by induction of papI and (ii) the level of expression of a papI::gfp + fusion was higher in E. coli CFT073 than in E. coli K-12. Furthermore, phase transition frequencies for the two E. coli CFT073 pap clusters were shown to be different depending on the culture conditions, indicating that there is a hierarchy of expression depending on signal inputs.


2001 ◽  
Vol 69 (12) ◽  
pp. 7588-7595 ◽  
Author(s):  
Eckhard Strauch ◽  
Rudi Lurz ◽  
Lothar Beutin

ABSTRACT A Shiga toxin (Stx)-encoding temperate bacteriophage ofShigella sonnei strain CB7888 was investigated for its morphology, DNA similarity, host range, and lysogenization inShigella and Escherichia coli strains. Phage 7888 formed plaques on a broad spectrum of Shigella strains belonging to different species and serotypes, including Stx-producingShigella dysenteriae type 1. With E. coli, only strains with rough lipopolysaccharide were sensitive to this phage. The phage integrated into the genome of nontoxigenic S. sonneiand laboratory E. coli K-12 strains, which became Stx positive upon lysogenization. Moreover, phage 7888 is capable of transducing chromosomal genes in E. coli K-12. The relationships of phage 7888 with the E. coli Stx1-producing phage H-19B and the E. coli Stx2-producing phage 933W were investigated by DNA cross-hybridization of phage genomes and by nucleotide sequencing of an 8,053-bp DNA region of the phage 7888 genome flanking the stx genes. By these methods, a high similarity was found between phages 7888 and 933W. Much less similarity was found between phages H-19B and 7888. As in the other Stx phages, a regulatory region involved in Q-dependent expression is found upstream of stxA and stxB (stx gene) in phage 7888. The morphology of phage 7888 was similar to that of phage 933W, which shows a hexagonal head and a short tail. Our findings demonstrate that stx genes are naturally transferable and are expressed in strains of S. sonnei, which points to the continuous evolution of human-pathogenic Shigella by horizontal gene transfer.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Qinghua Jiang ◽  
Jixuan Wang ◽  
Yadong Wang ◽  
Rui Ma ◽  
Xiaoliang Wu ◽  
...  

High-throughput genomic technologies like lncRNA microarray and RNA-Seq often generate a set of lncRNAs of interest, yet little is known about the transcriptional regulation of the set of lncRNA genes. Here, based on ChIP-Seq peak lists of transcription factors (TFs) from ENCODE and annotated human lncRNAs from GENCODE, we developed a web-based interface titled “TF2lncRNA,” where TF peaks from each ChIP-Seq experiment are crossed with the genomic coordinates of a set of input lncRNAs, to identify which TFs present a statistically significant number of binding sites (peaks) within the regulatory region of the input lncRNA genes. The input can be a set of coexpressed lncRNA genes or any other cluster of lncRNA genes. Users can thus infer which TFs are likely to be common transcription regulators of the set of lncRNAs. In addition, users can retrieve all lncRNAs potentially regulated by a specific TF in a specific cell line of interest or retrieve all TFs that have one or more binding sites in the regulatory region of a given lncRNA in the specific cell line. TF2LncRNA is an efficient and easy-to-use web-based tool.


1991 ◽  
Vol 11 (10) ◽  
pp. 4934-4942
Author(s):  
J C Schneider ◽  
L Guarente

Mitochondrial biogenesis requires the coordinate induction of hundreds of genes that reside in the nucleus. We describe here a study of the regulation of the nuclear-encoded cytochrome c1 of the b-c1 complex. Unlike cytochrome c, which is encoded by two genes, CYC1 and CYC7, c1 is encoded by a single gene, CYT1. The regulatory region of the CYT1 promoter contains binding sites for the HAP1 and HAP2/3/4 transactivators that regulate CYC1. The binding of HAP1 to the CYT1 element was studied in detail and found to differ in two important respects from binding to the CYC1 element. First, while CYC1 contains two sites that bind HAP1 cooperatively, CYT1 has a single high-affinity site. Second, while the CYT1 site and the stronger HAP1-binding site of CYC1 share a large block of homology, the HAP1 footprints at these sites are offset by several nucleotides. We discuss how these differences in HAP1 binding might relate to the difference in the biology of cytochrome c and cytochrome c1.


2005 ◽  
Vol 187 (8) ◽  
pp. 2609-2617 ◽  
Author(s):  
R. Gary Sawers

ABSTRACT FNR is a global transcriptional regulator that controls anaerobic gene expression in Escherichia coli. Through the use of a number of approaches it was shown that fnr gene expression is reduced approximately three- to fourfold in E. coli strain MC4100 compared with the results seen with strain MG1655. This reduction in fnr expression is due to the insertion of IS5 (is5F) in the regulatory region of the gene at position −41 relative to the transcription initiation site. Transcription of the fnr gene nevertheless occurs from its own promoter in strain MC4100, but transcript levels are reduced approximately fourfold compared with those seen with strain MG1655. Remarkably, in strains bearing is5F the presence of Hfq prevents IS5-dependent transcriptional silencing of fnr expression. Thus, an hfq mutant of MC4100 is devoid of FNR protein and has the phenotype of an fnr mutant. In strain MG1655, or a derivative of MC4100 lacking is5F, mutation of hfq had no effect on fnr transcript levels. This finding indicates that IS5 mediates the effect of Hfq on fnr expression in MC4100. Western blot analysis revealed that cellular levels of FNR were reduced threefold in strain MC4100 compared with strain MG1655 results. A selection of FNR-dependent genes fused to lacZ were analyzed for the effects of reduced FNR levels on anaerobic gene expression. Expression of some operons, e.g., focA-pfl and fdnGHJI, was unaffected by reduction in the level of FNR, while the expression of other genes such as ndh and nikA was clearly affected.


Microbiology ◽  
2010 ◽  
Vol 156 (4) ◽  
pp. 1155-1166 ◽  
Author(s):  
Inga Benz ◽  
Tessa van Alen ◽  
Julia Bolte ◽  
Mirka E. Wörmann ◽  
M. Alexander Schmidt

In Gram-negative bacteria, autotransporter proteins constitute the largest family of secreted proteins, and exhibit many different functions. In recent years, research has largely focused on mechanisms of autotransporter protein translocation, where several alternative models are still being discussed. In contrast, the biogenesis of only a few autotransporters has been studied and, likewise, regulation of expression has received only very limited attention. The glycosylated autotransporter adhesin involved in diffuse adherence (AIDA)-I system consists of the aah gene, encoding a specific autotransporter adhesin heptosyltransferase (AAH), and the aidA gene, encoding the autotransporter protein (AIDA-I). In this study, we investigated the promoter organization and transcription of these two genes using reporter plasmids carrying lacZ transcriptional fusions. The two genes, aah and aidA, are transcribed as a bicistronic message. However, aidA is additionally transcribed from its own promoter. There are two distinct start sites for each of the two genes. Interestingly, transcription of both genes is enhanced in hns and rfaH mutant backgrounds. Furthermore, we addressed the influence of environmental factors and different genetic backgrounds of Escherichia coli K-12 strains on transcription activity. We found that transcription varied considerably in different E. coli K-12 laboratory strains and under different growth conditions.


Sign in / Sign up

Export Citation Format

Share Document