scholarly journals Identification of Type 3 Fimbriae in Uropathogenic Escherichia coli Reveals a Role in Biofilm Formation

2007 ◽  
Vol 190 (3) ◽  
pp. 1054-1063 ◽  
Author(s):  
Cheryl-Lynn Y. Ong ◽  
Glen C. Ulett ◽  
Amanda N. Mabbett ◽  
Scott A. Beatson ◽  
Richard I. Webb ◽  
...  

ABSTRACT Catheter-associated urinary tract infection (CAUTI) is the most common nosocomial infection in the United States. Uropathogenic Escherichia coli (UPEC), the most common cause of CAUTI, can form biofilms on indwelling catheters. Here, we identify and characterize novel factors that affect biofilm formation by UPEC strains that cause CAUTI. Sixty-five CAUTI UPEC isolates were characterized for phenotypic markers of urovirulence, including agglutination and biofilm formation. One isolate, E. coli MS2027, was uniquely proficient at biofilm growth despite the absence of adhesins known to promote this phenotype. Mini-Tn5 mutagenesis of E. coli MS2027 identified several mutants with altered biofilm growth. Mutants containing insertions in genes involved in O antigen synthesis (rmlC and manB) and capsule synthesis (kpsM) possessed enhanced biofilm phenotypes. Three independent mutants deficient in biofilm growth contained an insertion in a gene locus homologous to the type 3 chaperone-usher class fimbrial genes of Klebsiella pneumoniae. These type 3 fimbrial genes (mrkABCDF), which were located on a conjugative plasmid, were cloned from E. coli MS2027 and could complement the biofilm-deficient transconjugants when reintroduced on a plasmid. Primers targeting the mrkB chaperone-encoding gene revealed its presence in CAUTI strains of Citrobacter koseri, Citrobacter freundii, Klebsiella pneumoniae, and Klebsiella oxytoca. All of these mrkB-positive strains caused type 3 fimbria-specific agglutination of tannic acid-treated red blood cells. This is the first description of type 3 fimbriae in E. coli, C. koseri, and C. freundii. Our data suggest that type 3 fimbriae may contribute to biofilm formation by different gram-negative nosocomial pathogens.

2009 ◽  
Vol 75 (21) ◽  
pp. 6783-6791 ◽  
Author(s):  
Cheryl-Lynn Y. Ong ◽  
Scott A. Beatson ◽  
Alastair G. McEwan ◽  
Mark A. Schembri

ABSTRACT A conjugative plasmid from the catheter-associated urinary tract infection strain Escherichia coli MS2027 was sequenced and annotated. This 42,644-bp plasmid, designated pMAS2027, contains 58 putative genes and is most closely related to plasmids belonging to incompatibility group X (IncX1). Plasmid pMAS2027 encodes two important virulence factors: type 3 fimbriae and a type IV secretion (T4S) system. Type 3 fimbriae, recently found to be functionally expressed in E. coli, played an important role in biofilm formation. Biofilm formation by E. coli MS2027 was specifically due to expression of type 3 fimbriae and not the T4S system. The T4S system, however, accounted for the conjugative ability of pMAS2027 and enabled a non-biofilm-forming strain to grow as part of a mixed biofilm following acquisition of this plasmid. Thus, the importance of conjugation as a mechanism to spread biofilm determinants was demonstrated. Conjugation may represent an important mechanism by which type 3 fimbria genes are transferred among the Enterobacteriaceae that cause device-related infections in nosocomial settings.


2017 ◽  
Vol 1 (2) ◽  
pp. 48-60
Author(s):  
A.G. Salmanov ◽  
A.V. Rudenko

Мета роботи — вивчити резистентність до антибіотиків бактеріальних збудників інфекцій сечових шляхів (ІСШ), виділених у пацієнтів урологічного стаціонару в м. Києві. Матеріали і методи. Досліджено 1612 штамів бактерій, виділених із сечі хворих з ІСШ (цистит, уретрит, пієлонефрит), госпіталізованих в урологічне відділення ДУ «Інститут урології НАМН України» у м. Києві протягом 2016 р. Серед пацієнтів переважали жінки — 1201 (74,5 %). Вік хворих становив від 17 до 74 років. Для збору даних використано медичну документацію лікарні. Мікробіологічні дослідження виконано у лабораторії мікробіології ДУ «Інститут урології НАМН України». Аналізували результати культурального дослідження зразків сечі, зібраних за наявності клінічних ознак ІСШ. Дослідження клінічного матеріалу та інтерпретацію отриманих результатів проводили загальноприйнятими методами. Вивчено чутливість уропатогенів до 31 антибіотика дискодифузійним методом відповідно до рекомендацій Інституту клінічних та лабораторних стандартів США (Clinical and Laboratory Standards Institute (CLSI)). Результати та обговорення. Аналіз мікробного спектра сечі виявив домінування серед уропатогенів штамів Escherichia coli (32,0 %), Enterococcus faecalis (19,5 %), Klebsiella pneumoniae (10,9 %), Staphylococcus epidermidis (8,9 %), S. haemolyticus (6,5 %) та Pseudomonas aeruginosa (6,4 %). Частка Enterococcus faecium, Enterobacter aerogenes і Streptococcus viridans становила відповідно 2,5, 2,2 і 1,6 %, Enterobacter cloacae, Klebsiella oxytoca, Acinetobacter baumannii, Proteus vulgaris та Providencia rettgeri — менше 1,0 %. У більшості випадків (69,7 %) мікроорганізми виділено у монокультурі, у решті випадків — у мікробних асоціа- ціях. Високу резистентність до тестованих антибіотиків виявили штами E. aerogenes (45,1 %), E. cloacae (45,7 %), E. faecium (40,9 %), E. faecalis (40,7 %), E. coli (39,9 %), P. aeruginosa (34,0 %), K. pneumoniae (28,6 %). Найбільш активними до уропатогенів були іміпенем (E. coli — 87,6 %, P. aeruginosa — 75,7 %, E. cloacae — 67,3 %, E. aerogenes — 72,6 %, K. pneumoniae — 93,2 %), меропенем (E. coli — 89,1 %, P. aeruginosa — 76,7 %, K. pneumoniae — 82,6 %), лефлоцин (E. coli — 74,5 %, ентерококи — 78,7 %, P. aeruginosa — 76,7 %, E. cloacae — 73,9 %, E. aerogenes — 80,4 %, K. pneumoniae — 83,5 %), амоксицилін/клавуланат (ентерококи — 84,6 %), фурагін (ентерококи — 82,6 %), цефоперазон (K. pneumoniae — 89,2 %, P. aeruginosa — 73,8 %), цефтріаксон (K. pneumoniae — 80,1 %). Висновки. Антибіотикорезистентність збудників ІСШ — важлива терапевтична проблема. Найбільшою активністю до уропатогенів характеризуються іміпенем, меропенем, лефлоцин, амоксицилін/ клавуланат, фурагін, цефоперазон, цефтріаксон, які можна розглядати як препарат вибору для призначення стартової терапії ІСШ. Необхідно здійснювати постійний моніторинг за резистентністю до дії антибіотиків. Політику використання антибіотиків у кожному стаціонарі слід визначати залежно від локальних даних щодо резистентності до протимікробних препаратів.


2011 ◽  
Vol 55 (12) ◽  
pp. 5666-5675 ◽  
Author(s):  
Bashar W. Shaheen ◽  
Rajesh Nayak ◽  
Steven L. Foley ◽  
Ohgew Kweon ◽  
Joanna Deck ◽  
...  

ABSTRACTResistance to extended-spectrum cephalosporins (ESC) among members of the familyEnterobacteriaceaeoccurs worldwide; however, little is known about ESC resistance inEscherichia colistrains from companion animals. Clinical isolates ofE. coliwere collected from veterinary diagnostic laboratories throughout the United States from 2008 to 2009.E. coliisolates (n= 54) with reduced susceptibility to ceftazidime or cefotaxime (MIC ≥ 16 μg/ml) and extended-spectrum-β-lactamase (ESBL) phenotypes were analyzed. PCR and sequencing were used to detect mutations in ESBL-encoding genes and the regulatory region of the chromosomal geneampC. Conjugation experiments and plasmid identification were conducted to examine the transferability of resistance to ESCs. All isolates carried theblaCTX-M-1-group β-lactamase genes in addition to one or more of the following β-lactamase genes:blaTEM,blaSHV-3,blaCMY-2,blaCTX-M-14-like, andblaOXA-1.DifferentblaTEMsequence variants were detected in some isolates (n= 40). Three isolates harbored ablaTEM-181gene with a novel mutation resulting in an Ala184Val substitution. Approximately 78% of the isolates had mutations in promoter/attenuator regions of the chromosomal geneampC, one of which was a novel insertion of adenine between bases −28 and −29. Plasmids ranging in size from 11 to 233 kbp were detected in the isolates, with a common plasmid size of 93 kbp identified in 60% of isolates. Plasmid-mediated transfer of β-lactamase genes increased the MICs (≥16-fold) of ESCs for transconjugants. Replicon typing among isolates revealed the predominance of IncI and IncFIA plasmids, followed by IncFIB plasmids. This study shows the emergence of conjugative plasmid-borne ESBLs amongE. colistrains from companion animals in the United States, which may compromise the effective therapeutic use of ESCs in veterinary medicine.


2013 ◽  
Vol 58 (2) ◽  
pp. 789-794 ◽  
Author(s):  
Dorina Timofte ◽  
Iuliana E. Maciuca ◽  
Nicholas J. Evans ◽  
Helen Williams ◽  
Andrew Wattret ◽  
...  

ABSTRACTRecent reports raised concerns about the role that farm stock may play in the dissemination of extended-spectrum β-lactamase (ESBL)-producing bacteria. This study characterized the ESBLs in twoEscherichia coliand threeKlebsiella pneumoniaesubsp.pneumoniaeisolates from cases of clinical bovine mastitis in the United Kingdom. Bacterial culture and sensitivity testing of bovine mastitic milk samples identified Gram-negative cefpodoxime-resistant isolates, which were assessed for their ESBL phenotypes. Conjugation experiments and PCR-based replicon typing (PBRT) were used for characterization of transferable plasmids.E. coliisolates belonged to sequence type 88 (ST88; determined by multilocus sequence typing) and carriedblaCTX-M-15andblaTEM-1, whileK. pneumoniaesubsp.pneumoniaeisolates carriedblaSHV-12andblaTEM-1. Conjugation experiments demonstrated thatblaCTX-M-15andblaTEM-1were carried on a conjugative plasmid inE. coli, and PBRT identified this to be an IncI1 plasmid. The resistance genes were nontransferable inK. pneumoniaesubsp.pneumoniaeisolates. Moreover, in theE. coliisolates, an association of ISEcp1 and IS26withblaCTX-M-15was found where the IS26element was inserted upstream of both ISEcp1and theblaCTX-Mpromoter, a genetic arrangement highly similar to that described in some United Kingdom human isolates. We report the first cases in Europe of bovine mastitis due toE. coliCTX-M-15 and also of bovine mastitis due toK. pneumoniaesubsp.pneumoniaeSHV-12 β-lactamases in the United Kingdom. We also describe the genetic environment ofblaCTX-M-15and highlight the role that IncI1 plasmids may play in the spread and dissemination of ESBL genes, which have been described in both human and cattle isolates.


2006 ◽  
Vol 75 (2) ◽  
pp. 966-976 ◽  
Author(s):  
Viktoria Hancock ◽  
Per Klemm

ABSTRACT Urinary tract infection (UTI) is an important health problem worldwide, with many millions of cases each year, and Escherichia coli is the most common organism causing UTI in humans. Also, E. coli is responsible for most infections in patients with chronic indwelling bladder catheter. The two asymptomatic bacteriuria (ABU) E. coli strains 83972 and VR50 are significantly better biofilm formers in their natural growth medium, human urine, than the two uropathogenic E. coli isolates CFT073 and 536. We used DNA microarrays to monitor the expression profile during biofilm growth in urine of the two ABU strains 83972 and VR50. Significant differences in expression levels were seen between the biofilm expression profiles of the two strains with the corresponding planktonic expression profiles in morpholinepropanesulfonic acid minimal laboratory medium and human urine; 417 and 355 genes were up- and down-regulated, respectively, during biofilm growth in urine of 83972 and VR50. Many genes involved in transcription and stress were up-regulated in biofilm-grown cells. The role in biofilm formation of four of the up-regulated genes, i.e., yceP, yqgA, ygiD, and aaeX, was investigated by creating single-knockout mutant versions of 83972 and VR50; all mutants showed reduced biofilm formation in urine by 18 to 43% compared with the wild type (P < 0.05). Also, the expression profile of strain 83972 in the human urinary tract partially overlaps with the biofilm expression profile.


Microbiology ◽  
2009 ◽  
Vol 155 (5) ◽  
pp. 1407-1417 ◽  
Author(s):  
Rebecca Munk Vejborg ◽  
Per Klemm

In this study we report on a novel structural phenotype in Escherichia coli biofilms: cellular chain formation. Biofilm chaining in E. coli K-12 was found to occur primarily by clonal expansion, but was not due to filamentous growth. Rather, chain formation was the result of intercellular interactions facilitated by antigen 43 (Ag43), a self-associating autotransporter (SAAT) protein, which has previously been implicated in auto-aggregation and biofilm formation. Immunofluorescence microscopy suggested that Ag43 was concentrated at or near the cell poles, although when the antigen was highly overexpressed, a much more uniform distribution was seen. Immunofluorescence microscopy also indicated that other parameters, including dimensional constraints (flow, growth alongside a surface), may also affect the final biofilm architecture. Moreover, chain formation was affected by other surface structures; type I fimbriae expression significantly reduced cellular chain formation, presumably by steric hindrance. Cellular chain formation did not appear to be specific to E. coli K-12. Although many urinary tract infection (UTI) isolates were found to form rather homogeneous, flat biofilms, three isolates, including the prototypic asymptomatic bacteriuria strain, 83972, formed highly elaborate cellular chains during biofilm growth in human urine. Combined, these results illustrate the diversity of biofilm architectures that can be observed even within a single microbial species.


2005 ◽  
Vol 71 (12) ◽  
pp. 8008-8015 ◽  
Author(s):  
Alfredo G. Torres ◽  
Cecelia Jeter ◽  
William Langley ◽  
Ann G. Matthysse

ABSTRACT Escherichia coli O157:H7 carried on plant surfaces, including alfalfa sprouts, has been implicated in food poisoning and outbreaks of disease in the United States. Adhesion to cell surfaces is a key component for bacterial establishment and colonization on many types of surfaces. Several E. coli O157:H7 surface proteins are thought to be important for adhesion and/or biofilm formation. Therefore, we examined whether mutations in several genes encoding potential adhesins and regulators of adherence have an effect on bacterial binding to plants and also examined the role of these genes during adhesion to Caco-2 cells and during biofilm formation on plastic in vitro. The genes tested included those encoding adhesins (cah, aidA1, and ompA) and mediators of hyperadherence (tdcA, yidE, waaI, and cadA) and those associated with fimbria formation (csgA, csgD, and lpfD2). The introduction of some of these genes (cah, aidA1, and csg loci) into an E. coli K-12 strain markedly increased its ability to bind to alfalfa sprouts and seed coats. The addition of more than one of these genes did not show an additive effect. In contrast, deletion of one or more of these genes in a strain of E. coli O157:H7 did not affect its ability to bind to alfalfa. Only the absence of the ompA gene had a significant effect on binding, and the plant-bacterium interaction was markedly reduced in a tdcA ompA double mutant. In contrast, the E. coli O157:H7 ompA and tdcA ompA mutant strains were only slightly affected in adhesion to Caco-2 cells and during biofilm formation. These findings suggest that some adhesins alone are sufficient to promote binding to alfalfa and that they may exist in E. coli O157:H7 as redundant systems, allowing it to compensate for the loss of one or more of these systems. Binding to the three types of surfaces appeared to be mediated by overlapping but distinct sets of genes. The only gene which appeared to be irreplaceable for binding to plant surfaces was ompA.


2004 ◽  
Vol 48 (2) ◽  
pp. 533-537 ◽  
Author(s):  
M. Alvarez ◽  
J. H. Tran ◽  
N. Chow ◽  
G. A. Jacoby

ABSTRACT A sample of 752 resistant Klebsiella pneumoniae, Klebsiella oxytoca, and Escherichia coli strains from 70 sites in 25 U.S. states and the District of Columbia was examined for transmissibility of resistance to ceftazidime and the nature of the plasmid-mediated β-lactamase involved. Fifty-nine percent of the K. pneumoniae, 24% of the K. oxytoca, and 44% of the E. coli isolates transferred resistance to ceftazidime. Plasmids encoding AmpC-type β-lactamase were found in 8.5% of the K. pneumoniae samples, 6.9% of the K. oxytoca samples, and 4% of the E. coli samples, at 20 of the 70 sites and in 10 of the 25 states. ACT-1 β-lactamase was found at eight sites, four of which were near New York City, where the ACT-1 enzyme was first discovered; ACT-1 β-lactamase was also found in Massachusetts, Pennsylvania, and Virginia. FOX-5 β-lactamase was also found at eight sites, mainly in southeastern states but also in New York. Two E. coli strains produced CMY-2, and one K. pneumoniae strain produced DHA-1 β-lactamase. Pulsed-field gel electrophoresis and plasmid analysis suggested that AmpC-mediated resistance spread both by strain and plasmid dissemination. All AmpC β-lactamase-containing isolates were resistant to cefoxitin, but so were 11% of strains containing transmissible SHV- and TEM-type extended-spectrum β-lactamases. A β-lactamase inhibitor test was helpful in distinguishing the two types of resistance but was not definitive since 24% of clinical isolates producing AmpC β-lactamase had a positive response to clavulanic acid. Coexistence of AmpC and extended-spectrum β-lactamases was the main reason for these discrepancies. Plasmid-mediated AmpC-type enzymes are thus responsible for an appreciable fraction of resistance in clinical isolates of Klebsiella spp. and E. coli, are disseminated around the United States, and are not so easily distinguished from other enzymes that mediate resistance to oxyimino-β-lactams.


Author(s):  
Nathália L. Andrade ◽  
Ana Carolina da Cruz Campos ◽  
Andrea Maria Cabral ◽  
Paula Hesselberg Damasco ◽  
Jerome Lo-Ten-Foe ◽  
...  

AbstractThe etiological agent for infective endocarditis (IE), a life-threatening disease, is usually gram-positive bacteria. However, gram-negative bacteria can rarely cause IE and 4% of cases are associated with morbidity and mortality. This study aimed to characterize Escherichia coli and Klebsiella pneumoniae isolates from the blood of patients with IE. The characteristics of blood isolates were compared with those of urinary isolates from patients with urinary tract infections (UTIs). The results of this study revealed that K. pneumoniae isolates from patients with IE were phylogenetically related to those from patients with UTI. Additionally, the resistance phenotype, resistance gene, virulence gene, and plasmid profiles were similar between the blood and urinary isolates. The isolates belonging to the sequence types (STs) 76, 36, 101 (K. pneumoniae), and 69 (E. coli) are reported to be associated with drug resistance. The Enterobacteriaceae isolates from patients with IE did not produce extended-spectrum β-lactamase or carbapenemase. Additionally, this study investigated the virulence phenotype, biofilm formation ability, and the ability to adhere to the epithelial cells in vitro of the isolates. The isolates from patients with IE exhibited weaker biofilm formation ability than the urinary isolates. All isolates from patients with IE could adhere to the renal epithelial cells. However, three isolates from patients with UTIs could not adhere to the epithelial cells. The closely related K. pneumoniae isolates (648, KP1, KP2, KP3, and KP4) could not form biofilms or adhere to the epithelial cells. In summary, the molecular analysis revealed that the genetic characteristics of IE-causing K. pneumoniae and E. coli were similar to those of UTI-causing isolates. These isolates belonged to the STs that are considered treatable. Genetically similar isolates did not exhibit the same virulence phenotype. Thus, these non-hypervirulent clones must be monitored as they can cause complex infections in susceptible hosts.


Biofilms ◽  
2005 ◽  
Vol 2 (4) ◽  
pp. 245-273

The effect of growth and detachment on formation of large-scale biofilm structureBiofilm cohesive energy density determination using a novel atomic force microscopy methodologyFluorescence correlation spectroscopy under two-photon excitation for the study of diffusion and reactivity of bacteriophage inside bacterial biofilmsBiothermodynamic characterization and dynamic analysis of biofilms using calorimetryBiomimetic antifouling coatings for sensor surfaces for water monitoring: performance control in defined biofilm cultures and under real environmental conditionsThe contribution of rpos to formation of Escherichia coli biofilmsSynergistic effects in mixed Escherichia coli biofilms: conjugative plasmid transfer drives biofilm expansionThe universal stress protein PA3309 in Pseudomonas aeruginosa is induced in biofilmsExtracellular polymeric substances from biofilms on membranes in waste-water treatment plantsBiofilm-to-planktonic cell yield: a strategy for proliferationPhysiological and phylogenetic characterization of the dispersed and loosely attached fraction of activated sludge flocsTowards a deterministic model of biofilm detachment: an experimental studyEffect of backwash on the characteristics of biofilm in a biological activated filter reactor using elemental sulfur particlesProcess performance and biomass properties in membrane-aerated bioreactorsBioaugmentation via conjugation in biofilms treating 3-chloroaniline: effects of selective pressureEffect of phosphorus on biofilm growth in a completely mixed biofilm reactorImpacts of biofilm development on reactive transport in porous media under variable flow regimensInfluence of biofilms on colloid mobility in the subsurfaceBiofilms in amendable in situ microcosms indicate relevant electron acceptor processes at a BTEX-contaminated aquiferFunctional biodiversity of complex biofilms grown on polychlorinated biphenyl oilIdentification and characterization of biofilm formation phenotypes of several clinically relevant Streptococcus pyogenes serotype strainsSelected probiotic bacteria disrupt biofilm development of vancomycin-resistant Enterococcus faeciumComparison of the extracellular polymeric substances of Candida albicans and Candida dubliniensis biofilmsInfluence of quorum-sensing regulated production of an antimicrobial component by Serratia plymuthica on establishment of dual species biofilms with Escherichia coliBiofilm formation by the thermophilic and cellulolytic actinomycete Thermobifida fuscaBiomonitoring of bacterial contamination on different surfaces of food-processing machinesRole of the flagella during the adhesion of Listeria monocytogenes EGD-e to inert surfaces after cultivation at different pHs and temperaturesAdhesion of Saccharomyces cerevisiae to stainless steel: influence of surface propertiesInvestigating the mechanical strength of biofilms with fluid dynamic gaugingThree-dimensional biofilm model with individual cells and continuum extracellular polymeric substances matrixA three-dimensional computer model analysis of four hypothetical biofilm detachment mechanismsModelling biofilm growth, detachment and fluid flow in a cross-section of tube reactorsBiofilm games


Sign in / Sign up

Export Citation Format

Share Document