scholarly journals Role of FliJ in Flagellar Protein Export inSalmonella

2000 ◽  
Vol 182 (15) ◽  
pp. 4207-4215 ◽  
Author(s):  
Tohru Minamino ◽  
Ryan Chu ◽  
Shigeru Yamaguchi ◽  
Robert M. Macnab

ABSTRACT We isolated and characterized spontaneous mutants with defects in the 147-amino-acid Salmonella protein FliJ, which is a cytoplasmic component of the type III flagellar export apparatus. These mutants, including ones with null mutations, have the ability to form swarms on motility agar plates after prolonged incubation at 30°C; i.e., they display a leaky motile phenotype. One mutant, SJW277, which formed significantly bigger swarms than the others, encoded only the N-terminal 73 amino acids of FliJ, one-half of the protein. At 30°C, overproduction of this mutant protein improved, to wild-type levels, both motility and the ability to export both rod/hook-type (FlgD; hook capping protein) and filament-type (FliC; flagellin) substrates. At 42°C, however, export was inhibited, indicating that the mutant FliJ protein was temperature sensitive. Taking advantage of this, we performed temperature upshift experiments, which demonstrated that FliJ is directly required for the export of FliC. Co-overproduction of FliJ and either of two export substrates, FliE or FlgG, hindered their aggregation in the cytoplasm. We conclude that FliJ is a general component of the flagellar export apparatus and has a chaperone-like activity for both rod/hook-type and filament-type substrates.

2006 ◽  
Vol 189 (5) ◽  
pp. 1565-1572 ◽  
Author(s):  
Venkata Ramana Vepachedu ◽  
Peter Setlow

ABSTRACT The release of dipicolinic acid (DPA) during the germination of Bacillus subtilis spores by the cationic surfactant dodecylamine exhibited a pH optimum of ∼9 and a temperature optimum of 60°C. DPA release during dodecylamine germination of B. subtilis spores with fourfold-elevated levels of the SpoVA proteins that have been suggested to be involved in the release of DPA during nutrient germination was about fourfold faster than DPA release during dodecylamine germination of wild-type spores and was inhibited by HgCl2. Spores carrying temperature-sensitive mutants in the spoVA operon were also temperature sensitive in DPA release during dodecylamine germination as well as in lysozyme germination of decoated spores. In addition to DPA, dodecylamine triggered the release of amounts of Ca2+ almost equivalent to those of DPA, and at least one other abundant spore small molecule, glutamic acid, was released in parallel with Ca2+ and DPA. These data indicate that (i) dodecylamine triggers spore germination by opening a channel in the inner membrane for Ca2+-DPA and other small molecules, (ii) this channel is composed at least in part of proteins, and (iii) SpoVA proteins are involved in the release of Ca2+-DPA and other small molecules during spore germination, perhaps by being a part of a channel in the spore's inner membrane.


2004 ◽  
Vol 78 (1) ◽  
pp. 257-265 ◽  
Author(s):  
Patricia Szajner ◽  
Andrea S. Weisberg ◽  
Bernard Moss

ABSTRACT Temperature-sensitive mutants of vaccinia virus, with genetic changes that map to the open reading frame encoding the F10 protein kinase, exhibit a defect at an early stage of viral morphogenesis. To further study the role of the enzyme, we constructed recombinant vaccinia virus vF10V5i, which expresses inducible V5 epitope-tagged F10 and is dependent on a chemical inducer for plaque formation and replication. In the absence of inducer, viral membrane formation was delayed and crescents and occasional immature forms were detected only late in infection. When the temperature was raised from 37 to 39°C, the block in membrane formation persisted throughout the infection. The increased stringency may be explained by a mild temperature sensitivity of the wild-type F10 kinase, which reduced the activity of the very small amount expressed in the absence of inducer, or by the thermolability of an unphosphorylated kinase substrate or uncomplexed F10-interacting protein. Further analyses demonstrated that tyrosine and threonine phosphorylation of the A17 membrane component was inhibited in the absence of inducer. The phosphorylation defect could be overcome by transfection of plasmids that express wild-type F10, but not by plasmids that express F10 with single amino acid substitutions that abolished catalytic activity. Although the mutated forms of F10 were stable and concentrated in viral factories, only the wild-type protein complemented the assembly and replication defects of vF10V5i in the absence of inducer. These studies provide evidence for an essential catalytic role of the F10 kinase in vaccinia virus morphogenesis.


2000 ◽  
Vol 182 (17) ◽  
pp. 4906-4914 ◽  
Author(s):  
Tohru Minamino ◽  
Robert M. Macnab

ABSTRACT We have investigated the properties of the cytoplasmic domain (FlhBC) of the 383-amino-acid Salmonellamembrane protein FlhB, a component of the type III flagellar export apparatus. FlhB, along with the hook-length control protein FliK, mediates the switching of export specificity from rod- and hook-type substrates to filament-type substrates during flagellar morphogenesis. Wild-type FlhBC was unstable (half-life, ca. 5 min), being specifically cleaved at Pro-270 into two polypeptides, FlhBCN and FlhBCC, which retained the ability to interact with each other after cleavage. Full-length wild-type FlhB was also subject to cleavage. Coproduction of the cleavage products, FlhBΔCC (i.e., the N-terminal transmembrane domain FlhBTM plus FlhBCN) and FlhBCC, resulted in restoration of both motility and flagellar protein export to an flhB mutant host, indicating that the two polypeptides were capable of productive association. Mutant FlhB proteins that can undergo switching of substrate specificity even in the absence of FliK were much more resistant to cleavage (half-lives, 20 to 60 min). The cleavage products of wild-type FlhBC, existing as a FlhBCN–FlhBCC complex on an affinity blot membrane, bound the rod- and hook-type substrate FlgD more strongly than the filament-type substrate FliC. In contrast, the intact form of FlhBC (mutant or wild type) or the FlhBCC polypeptide alone bound FlgD and FliC to about the same extent. FlhBCN by itself did not bind substrates appreciably. We propose that FlhBC has two substrate specificity states and that a conformational change, mediated by the interaction between FlhBCN and FlhBCC, is responsible for the specificity switching process. FliK itself is an export substrate; its binding properties for FlhBC resemble those of FlgD and do not provide any evidence for a physical interaction beyond that of the export process.


1995 ◽  
Vol 15 (12) ◽  
pp. 7098-7105 ◽  
Author(s):  
S Laloraya ◽  
P J Dekker ◽  
W Voos ◽  
E A Craig ◽  
N Pfanner

Mitochondrial GrpE (Mge1p) is a mitochondrial cochaperone essential for viability of the yeast Saccharomyces cerevisiae. To study the role of Mge1p in the biogenesis of mitochondrial proteins, we isolated a conditional mutant allele of MGE1 which conferred a temperature-sensitive growth phenotype and led to the accumulation of mitochondrial preproteins after shifting of the cells to the restrictive temperature. The mutant Mge1 protein was impaired in its interaction with the matrix heat shock protein mt-Hsp70. The mutant mitochondria showed a delayed membrane translocation of preproteins, and the maturation of imported proteins was impaired, as evidenced by the retarded second proteolytic processing of a preprotein in the matrix. Moreover, the aggregation of imported proteins was decreased in the mutant mitochondria. The mutant Mge1p differentially modulated the interaction of mt-Hsp70 with preproteins compared with the wild type, resulting in decreased binding to preproteins in membrane transit and enhanced binding to fully imported proteins. We conclude that the interaction of Mge1p with mt-Hsp70 promotes the progress of the Hsp70 reaction cycle, which is essential for import and maturation of mitochondrial proteins.


2001 ◽  
Vol 183 (17) ◽  
pp. 4964-4969 ◽  
Author(s):  
Katsuhiro Hanada ◽  
Teruhito Yamashita ◽  
Yuko Shobuike ◽  
Hideo Ikeda

ABSTRACT To study the involvement of DNA replication in UV-induced illegitimate recombination, we examined the effect of temperature-sensitive dnaB mutations on illegitimate recombination and found that the frequency of illegitimate recombination was reduced by an elongation-deficient mutation,dnaB14, but not by an initiation-deficient mutation,dnaB252. This result indicates that DNA replication is required for UV-induced illegitimate recombination. In addition, thednaB14 mutation also affected spontaneous or UV-induced illegitimate recombination enhanced by the recQmutation. Nucleotide sequence analyses of the recombination junctions showed that DnaB-mediated illegitimate recombination is short homology dependent. Previously, Michel et al. (B. Michel, S. Ehrlich, and M. Uzest, EMBO J. 16:430–438, 1997) showed that thermal treatment of the temperature-sensitive dnaB8 mutant induces double-stranded breaks, implying that induction of illegitimate recombination occurs. To explain the discrepancy between the observations, we propose a model for DnaB function, in which thednaB mutations may exhibit two types of responses, early and late responses, for double-stranded break formation. In the early response, replication forks stall at damaged DNA, resulting in the formation of double-stranded breaks, and the dnaB14mutation reduces the double-stranded breaks shortly after temperature shift-up. On the other hand, in the late response, the arrested replication forks mediated by the dnaB8 mutation may induce double-stranded breaks after prolonged incubation.


2003 ◽  
Vol 185 (8) ◽  
pp. 2485-2492 ◽  
Author(s):  
Takanori Hirano ◽  
Tohru Minamino ◽  
Keiichi Namba ◽  
Robert M. Macnab

ABSTRACT Most flagellar proteins of Salmonella are exported to their assembly destination via a specialized apparatus. This apparatus is a member of the type III superfamily, which is widely used for secretion of virulence factors by pathogenic bacteria. Extensive studies have been carried out on the export of several of the flagellar proteins, most notably the hook protein (FlgE), the hook-capping protein (FlgD), and the filament protein flagellin (FliC). This has led to the concept of two export specificity classes, the rod/hook type and the filament type. However, little direct experimental evidence has been available on the export properties of the basal-body rod proteins (FlgB, FlgC, FlgF, and FlgG), the putative MS ring-rod junction protein (FliE), or the muramidase and putative rod-capping protein (FlgJ). In this study, we have measured the amounts of these proteins exported before and after hook completion. Their amounts in the culture supernatant from a flgE mutant (which is still at the hook-type specificity stage) were much higher than those from a flgK mutant (which has advanced to the filament-type specificity stage), placing them in the same class as the hook-type proteins. Overproduction of FliE, FlgB, FlgC, FlgF, FlgG, or FlgJ caused inhibition of the motility of wild-type cells and inhibition of the export of the hook-capping protein FlgD. We also examined the question of whether export and translation are linked and found that all substrates tested could be exported after protein synthesis had been blocked by spectinomycin or chloramphenicol. We conclude that the amino acid sequence of these proteins suffices to mediate their recognition and export.


Genetics ◽  
2001 ◽  
Vol 158 (1) ◽  
pp. 29-39
Author(s):  
Masaaki Onda ◽  
Junko Yamaguchi ◽  
Katsuhiro Hanada ◽  
Yasuo Asami ◽  
Hideo Ikeda

Abstract We studied the role of DNA ligase in illegitimate recombination in Escherichia coli. A temperature-sensitive mutation in the lig gene reduced the frequency with which λbio-transducing phages were generated to 10-14% of that of wild type under UV irradiation. Reintroduction of the lig gene into this mutant restored the frequency of recombinant phage generation to that of wild type. Furthermore, overexpression of DNA ligase enhanced illegitimate recombination by 10-fold with or without UV irradiation. In addition, when DNA ligase was present in only limited amounts, UV-induced or spontaneous illegitimate recombination occurred exclusively at hotspot sites that have relatively long sequences of homology (9 or 13 bp). However, when DNA ligase was overexpressed, most of the illegitimate recombination took place at non-hotspot sites having only short sequences of homology (<4 bp). Thus, the level of ligase activity affects the frequency of illegitimate recombination, the length of sequence homology at the recombination sites, and the preference for recombination at hotspots, at least after UV irradiation. These observations support our hypothesis that the illegitimate recombination that generates λbio-transducing phages is mediated by the DNA break-and-join mechanism.


Genetics ◽  
1989 ◽  
Vol 123 (4) ◽  
pp. 755-769 ◽  
Author(s):  
T Schedl ◽  
P L Graham ◽  
M K Barton ◽  
J Kimble

Abstract In wild-type Caenorhabditis elegans there are two sexes, self-fertilizing hermaphrodites (XX) and males (XO). To investigate the role of tra-1 in controlling sex determination in germline tissue, we have examined germline phenotypes of nine tra-1 loss-of-function (lf) mutations. Previous work has shown that tra-1 is needed for female somatic development as the nongonadal soma of tra-1(lf) XX mutants is masculinized. In contrast, the germline of tra-1(lf) XX and XO animals is often feminized; a brief period of spermatogenesis is followed by oogenesis, rather than the continuous spermatogenesis observed in wild-type males. In addition, abnormal gonadal (germ line and somatic gonad) phenotypes are observed which may reflect defects in development or function of somatic gonad regulatory cells. Analysis of germline feminization and abnormal gonadal phenotypes of the various mutations alone or in trans to a deficiency reveals that they cannot be ordered in an allelic series and they do not converge to a single phenotypic endpoint. These observations lead to the suggestion that tra-1 may produce multiple products and/or is autoregulated. One interpretation of the germline feminization is that tra-1(+) is necessary for continued specification of spermatogenesis in males. We also report the isolation and characterization of tra-1 gain-of-function (gf) mutations with novel phenotypes. These include temperature sensitive, recessive germline feminization, and partial somatic loss-of-function phenotypes.


2008 ◽  
Vol 53 (3) ◽  
pp. 1061-1066 ◽  
Author(s):  
Angela M. Starks ◽  
Aysel Gumusboga ◽  
Bonnie B. Plikaytis ◽  
Thomas M. Shinnick ◽  
James E. Posey

ABSTRACT Ethambutol resistance in clinical Mycobacterium tuberculosis isolates is associated primarily with missense mutations in the embB gene. However, recent reports have described the presence of embB mutations, especially those at embB codon 306, in isolates susceptible to ethambutol. To clarify the role of embB mutations in ethambutol resistance, we sequenced the ethambutol resistance-determining region in spontaneous ethambutol-resistant mutants. In our study, 66% of spontaneous mutants contained a single point mutation in embB, with 55% of these occurring at embB 306. The MIC of ethambutol for spontaneous mutants was increased two- to eightfold relative to the pansusceptible M. tuberculosis strains from which the mutants were generated. To further characterize the role of embB 306 mutations, we directly introduced mutant alleles, embB(M306V) or embB(M306I), into pansusceptible M. tuberculosis strains and conversely reverted mutant alleles in spontaneous ethambutol-resistant mutants back to those of the wild type via allelic exchange using specialized linkage transduction. We determined that the MIC of ethambutol was reduced fourfold for three of the four spontaneous ethambutol-resistant embB 306 mutants when the mutant allele was replaced with the wild-type embB allele. The MIC for one of the spontaneous mutants genetically reverted to wild-type embB was reduced by only twofold. When the wild-type embB allele was converted to the mutant allele embB(M306V), the ethambutol MIC was increased fourfold, and when the allele was changed to M306I, the ethambutol MIC increased twofold. Our data indicate that embB 306 mutations are sufficient to confer ethambutol resistance, and detection of these mutations should be considered in the development of rapid molecular tests.


2007 ◽  
Vol 189 (24) ◽  
pp. 8793-8800 ◽  
Author(s):  
Christopher J. Rosario ◽  
Mitchell Singer

ABSTRACT Under conditions of nutrient deprivation, Myxococcus xanthus undergoes a developmental process that results in the formation of a fruiting body containing environmentally resistant myxospores. We have shown that myxospores contain two copies of the genome, suggesting that cells must replicate the genome prior to or during development. To further investigate the role of DNA replication in development, a temperature-sensitive dnaB mutant, DnaBA116V, was isolated from M. xanthus. Unlike what happens in Escherichia coli dnaB mutants, where DNA replication immediately halts upon a shift to a nonpermissive temperature, growth and DNA replication of the M. xanthus mutant ceased after one cell doubling at a nonpermissive temperature, 37°C. We demonstrated that at the nonpermissive temperature the DnaBA116V mutant arrested as a population of 1n cells, implying that these cells could complete one round of the cell cycle but did not initiate new rounds of DNA replication. In developmental assays, the DnaBA116V mutant was unable to develop into fruiting bodies and produced fewer myxospores than the wild type at the nonpermissive temperature. However, the mutant was able to undergo development when it was shifted to a permissive temperature, suggesting that cells had the capacity to undergo DNA replication during development and to allow the formation of myxospores.


Sign in / Sign up

Export Citation Format

Share Document