scholarly journals Characterization and Evolution of Anthranilate 1,2-Dioxygenase from Acinetobacter sp. Strain ADP1

2001 ◽  
Vol 183 (1) ◽  
pp. 109-118 ◽  
Author(s):  
D. Matthew Eby ◽  
Zanna M. Beharry ◽  
Eric D. Coulter ◽  
Donald M. Kurtz ◽  
Ellen L. Neidle

ABSTRACT The two-component anthranilate 1,2-dioxygenase of the bacteriumAcinetobacter sp. strain ADP1 was expressed inEscherichia coli and purified to homogeneity. This enzyme converts anthranilate (2-aminobenzoate) to catechol with insertion of both atoms of O2 and consumption of one NADH. The terminal oxygenase component formed an α3β3 hexamer of 54- and 19-kDa subunits. Biochemical analyses demonstrated one Rieske-type [2Fe-2S] center and one mononuclear nonheme iron center in each large oxygenase subunit. The reductase component, which transfers electrons from NADH to the oxygenase component, was found to contain approximately one flavin adenine dinucleotide and one ferredoxin-type [2Fe-2S] center per 39-kDa monomer. Activities of the combined components were measured as rates and quantities of NADH oxidation, substrate disappearance, product appearance, and O2 consumption. Anthranilate conversion to catechol was stoichiometrically coupled to NADH oxidation and O2consumption. The substrate analog benzoate was converted to a nonaromatic benzoate 1,2-diol with similarly tight coupling. This latter activity is identical to that of the related benzoate 1,2-dioxygenase. A variant anthranilate 1,2-dioxygenase, previously found to convey temperature sensitivity in vivo because of a methionine-to-lysine change in the large oxygenase subunit, was purified and characterized. The purified M43K variant, however, did not hydroxylate anthranilate or benzoate at either the permissive (23°C) or nonpermissive (39°C) growth temperatures. The wild-type anthranilate 1,2-dioxygenase did not efficiently hydroxylate methylated or halogenated benzoates, despite its sequence similarity to broad-substrate specific dioxygenases that do. Phylogenetic trees of the α and β subunits of these terminal dioxygenases that act on natural and xenobiotic substrates indicated that the subunits of each terminal oxygenase evolved from a common ancestral two-subunit component.

2011 ◽  
Vol 80 (1) ◽  
pp. 3-13 ◽  
Author(s):  
Chen Li ◽  
Kurniyati ◽  
Bo Hu ◽  
Jiang Bian ◽  
Jianlan Sun ◽  
...  

ABSTRACTThe oral bacteriumPorphyromonas gingivalisis a key etiological agent of human periodontitis, a prevalent chronic disease that affects up to 80% of the adult population worldwide.P. gingivalisexhibits neuraminidase activity. However, the enzyme responsible for this activity, its biochemical features, and its role in the physiology and virulence ofP. gingivalisremain elusive. In this report, we found thatP. gingivalisencodes a neuraminidase, PG0352 (SiaPg). Transcriptional analysis showed thatPG0352is monocistronic and is regulated by a sigma70-like promoter. Biochemical analyses demonstrated that SiaPgis an exo-α-neuraminidase that cleaves glycosidic-linked sialic acids. Cryoelectron microscopy and tomography analyses revealed that thePG0352deletion mutant (ΔPG352) failed to produce an intact capsule layer. Compared to the wild type,in vitrostudies showed that ΔPG352 formed less biofilm and was less resistant to killing by the host complement.In vivostudies showed that while the wild type caused a spreading type of infection that affected multiple organs and all infected mice were killed, ΔPG352 only caused localized infection and all animals survived. Taken together, these results demonstrate that SiaPgis an important virulence factor that contributes to the biofilm formation, capsule biosynthesis, and pathogenicity ofP. gingivalis, and it can potentially serve as a new target for developing therapeutic agents againstP. gingivalisinfection.


2001 ◽  
Vol 183 (2) ◽  
pp. 628-636 ◽  
Author(s):  
Sara Lázaro ◽  
Francisca Fernández-Piñas ◽  
Eduardo Fernández-Valiente ◽  
Amaya Blanco-Rivero ◽  
Francisco Leganés

ABSTRACT Transposon mutagenesis of Anabaena sp. strain PCC7120 led to the isolation of a mutant strain, SNa1, which is unable to fix nitrogen aerobically but is perfectly able to grow with combined nitrogen (i.e., nitrate). Reconstruction of the transposon mutation of SNa1 in the wild-type strain reproduced the phenotype of the original mutant. The transposon had inserted within an open reading frame whose translation product shows significant homology with a family of proteins known as high-molecular-weight penicillin-binding proteins (PBPs), which are involved in the synthesis of the peptidoglycan layer of the cell wall. A sequence similarity search allowed us to identify at least 12 putative PBPs in the recently sequencedAnabaena sp. strain PCC7120 genome, which we have named and organized according to predicted molecular size and theEscherichia coli nomenclature for PBPs; based on this nomenclature, we have denoted the gene interrupted in SNal aspbpB and its product as PBP2. The wild-type form ofpbpB on a shuttle vector successfully complemented the mutation in SNa1. In vivo expression studies indicated that PBP2 is probably present when both sources of nitrogen, nitrate and N2, are used. When nitrate is used, the function of PBP2 either is dispensable or may be substituted by other PBPs; however, under nitrogen deprivation, where the differentiation of the heterocyst takes place, the role of PBP2 in the formation and/or maintenance of the peptidoglycan layer is essential.


2007 ◽  
Vol 88 (6) ◽  
pp. 1667-1676 ◽  
Author(s):  
Caroline Gubser ◽  
Rory Goodbody ◽  
Andrea Ecker ◽  
Gareth Brady ◽  
Luke A. J. O'Neill ◽  
...  

Camelpox virus (CMLV) gene 176R encodes a protein with sequence similarity to murine schlafen (m-slfn) proteins. In vivo, short and long members of the m-slfn family inhibited T-cell development, whereas in vitro, only short m-slfns caused arrest of fibroblast growth. CMLV 176 protein (v-slfn) is most closely related to short m-slfns; however, when expressed stably in mammalian cells, v-slfn did not inhibit cell growth. v-slfn is a predominantly cytoplasmic 57 kDa protein that is expressed throughout infection. Several other orthopoxviruses encode v-slfn proteins, but the v-slfn gene is fragmented in all sequenced variola virus and vaccinia virus (VACV) strains. Consistent with this, all 16 VACV strains tested do not express a v-slfn detected by polyclonal serum raised against the CMLV protein. In the absence of a small animal model to study CMLV pathogenesis, the contribution of CMLV v-slfn to orthopoxvirus virulence was studied via its expression in an attenuated strain of VACV. Recombinant viruses expressing wild-type v-slfn or v-slfn tagged at its C terminus with a haemagglutinin (HA) epitope were less virulent than control viruses. However, a virus expressing v-slfn tagged with the HA epitope at its N terminus had similar virulence to controls, implying that the N terminus has an important function. A greater recruitment of lymphocytes into infected lung tissue was observed in the presence of wild-type v-slfn but, interestingly, these cells were less activated. Thus, v-slfn is an orthopoxvirus virulence factor that affects the host immune response to infection.


Endocrinology ◽  
2005 ◽  
Vol 146 (6) ◽  
pp. 2620-2628 ◽  
Author(s):  
Masayuki Yamaguchi ◽  
Naoshi Ogata ◽  
Yusuke Shinoda ◽  
Toru Akune ◽  
Satoru Kamekura ◽  
...  

Abstract Bone anabolic action of PTH has been suggested to be mediated by induction of IGF-I in osteoblasts; however, little is known about the molecular mechanism by which IGF-I leads to bone formation under the PTH stimulation. This study initially confirmed in mouse osteoblast cultures that PTH treatment increased IGF-I mRNA and protein levels and alkaline phosphatase activity, which were accompanied by phosphorylations of IGF-I receptor, insulin receptor substrate (IRS)-1 and IRS-2, essential adaptor molecules for the IGF-I signaling. To learn the involvement of IRS-1 and IRS-2 in the bone anabolic action of PTH in vivo, IRS-1−/− and IRS-2−/− mice and their respective wild-type littermates were given daily injections of PTH (80 μg/kg) or vehicle for 4 wk. In the wild-type mice, the PTH injection increased bone mineral densities of the femur, tibia, and vertebrae by 10–20% without altering the serum IGF-I level. These stimulations were similarly seen in IRS-2−/− mice; however, they were markedly suppressed in IRS-1−/− mice. Although the PTH anabolic effects were stronger on trabecular bones than on cortical bones, the stimulations on both bones were blocked in IRS-1−/− mice but not in IRS-2−/− mice. Histomorphometric and biochemical analyses showed an increased bone turnover by PTH, which was also blunted by the IRS-1 deficiency, though not by the IRS-2 deficiency. These results indicate that the PTH bone anabolic action is mediated by the activation of IRS-1, but not IRS-2, as a downstream signaling of IGF-I that acts locally as an autocrine/paracrine factor.


Microbiology ◽  
2005 ◽  
Vol 151 (5) ◽  
pp. 1671-1682 ◽  
Author(s):  
A. Blanco-Rivero ◽  
F. Leganés ◽  
E. Fernández-Valiente ◽  
P. Calle ◽  
F. Fernández-Piñas

Transposon mutagenesis of Anabaena sp. PCC7120 led to the isolation of a mutant strain, PHB11, which grew poorly at pH values above 10. The mutant strain exhibited pronounced Na+ sensitivity; this sensitivity was higher under basic conditions. Mutant PHB11 also showed an inhibition of photosynthesis that was much more pronounced at alkaline pH. Reconstruction of the transposon mutation of PHB11 in the wild-type strain reproduced the phenotype of the original mutant. The wild-type version of the mutated gene was cloned and the mutation complemented. In mutant strain PHB11, the transposon had inserted within an ORF that is part of a seven-ORF operon with significant sequence similarity to a family of bacterial operons that are believed to code for a novel multiprotein cation/proton antiporter primarily involved in resistance to salt stress and adaptation to alkaline pH. The Anabaena operon was denoted mrp (multiple resistance and pH adaptation) following the nomenclature of the Bacillus subtilis operon; the ORF mutated in PHB11 corresponded to mrpA. Computer analysis suggested that all seven predicted Anabaena Mrp proteins were highly hydrophobic with several transmembrane domains; in fact, the predicted protein sequences encoded by mrpA, mrpB and mrpC showed significant similarity to hydrophobic subunits of the proton pumping NADH : ubiquinone oxidoreductase. In vivo expression studies indicated that mrpA is induced with increasing external Na+ concentrations and alkaline pH; mrpA is also upregulated under inorganic carbon (Ci) limitation. The biological significance of a putative cyanobacterial Mrp complex is discussed.


2002 ◽  
Vol 83 (5) ◽  
pp. 1223-1235 ◽  
Author(s):  
Dico van Meerten ◽  
Herman Groeneveld ◽  
David M. J. Miller ◽  
Guillaume B. Marechal ◽  
Nina V. Tsareva ◽  
...  

Hybrids between different species or genera of the single-stranded RNA coliphages have not been found in nature. Here, it has been shown that viable hybrids between different phage species can easily be generated in the laboratory by in vivo recombination. cDNA of species I phage MS2 located on a plasmid and lacking part of its 5′ untranslated leader (5′ UTR) was complemented with another plasmid carrying the 5′ half of the genome of fr, a species I phage, or of KU1, a species II representative with low sequence similarity. When the two plasmids were present in the same cell there was spontaneous production of hybrid phages. Interestingly, these hybrids did not arise by a double or single crossover that would replace the missing MS2 sequences with those of fr or KU1. Rather, hybrids arose by attaching the complete 5′ UTR of fr or KU1 to the 5′ terminus of the defective MS2 phage. Several elements of the 5′ UTR then occurred twice, one from KU1 (or fr) and the other from MS2. These redundant elements are in most cases deleted upon evolution of the hybrids. As a result, the 5′ UTR of KU1 (or fr) then replaced that of MS2. It was earlier shown that this 5′ UTR could assume two alternating structures that facilitated transient translation of the proximal maturation gene. Apparently, this timer function of the 5′ UTR was exchangeable and could function independently of the rest of the genome. When hybrids were competed against wild-type, they were quickly outgrown, probably explaining their absence from natural isolates.


2003 ◽  
Vol 185 (12) ◽  
pp. 3515-3523 ◽  
Author(s):  
Martin Gimmestad ◽  
Håvard Sletta ◽  
Helga Ertesvåg ◽  
Karianne Bakkevig ◽  
Sumita Jain ◽  
...  

ABSTRACT Bacterial alginates are produced as 1-4-linked β-d-mannuronan, followed by epimerization of some of the mannuronic acid residues to α-l-guluronic acid. Here we report the isolation of four different epimerization-defective point mutants of the periplasmic Pseudomonas fluorescens mannuronan C-5-epimerase AlgG. All mutations affected amino acids conserved among AlgG-epimerases and were clustered in a part of the enzyme also sharing some sequence similarity to a group of secreted epimerases previously reported in Azotobacter vinelandii. An algG-deletion mutant was constructed and found to produce predominantly a dimer containing a 4-deoxy-l- erythro-hex-4-enepyranosyluronate residue at the nonreducing end and a mannuronic acid residue at the reducing end. The production of this dimer is the result of the activity of an alginate lyase, AlgL, whose in vivo activity is much more limited in the presence of AlgG. A strain expressing both an epimerase-defective (point mutation) and a wild-type epimerase was constructed and shown to produce two types of alginate molecules: one class being pure mannuronan and the other having the wild-type content of guluronic acid residues. This formation of two distinct classes of polymers in a genetically pure cell line can be explained by assuming that AlgG is part of a periplasmic protein complex.


1995 ◽  
Vol 74 (05) ◽  
pp. 1316-1322 ◽  
Author(s):  
Mary Ann McLane ◽  
Jagadeesh Gabbeta ◽  
A Koneti Rao ◽  
Lucia Beviglia ◽  
Robert A Lazarus ◽  
...  

SummaryNaturally-occurring fibrinogen receptor antagonists and platelet aggregation inhibitors that are found in snake venom (disintegrins) and leeches share many common features, including an RGD sequence, high cysteine content, and low molecular weight. There are, however, significant selectivity and potency differences. We compared the effect of three proteins on platelet function: albolabrin, a 7.5 kDa disintegrin, eristostatin, a 5.4 kDa disintegrin in which part of the disintegrin domain is deleted, and decorsin, a 4.5 kDa non-disintegrin derived from the leech Macrobdella decora, which has very little sequence similarity with either disintegrin. Decorsin was about two times less potent than albolabrin and six times less potent than eristostatin in inhibiting ADP- induced human platelet aggregation. It had a different pattern of interaction with glycoprotein IIb/IIIa as compared to the two disintegrins. Decorsin bound with a low affinity to resting platelets (409 nM) and to ADP-activated platelets (270 nM), and with high affinity to thrombin- activated platelets (74 nM). At concentrations up to 685 nM, it did not cause expression of a ligand-induced binding site epitope on the (β3 subunit of the GPIIb/IIIa complex. It did not significantly inhibit isolated GPIIb/IIIa binding to immobilized von Willebrand Factor. At low doses (1.5-3.0 μg/mouse), decorsin protected mice against death from pulmonary thromboembolism, showing an effect similar to eristostatin. This suggested that decorsin is a much more potent inhibitor of platelet aggregation in vivo than in vitro, and it may have potential as an antiplatelet drug.


2018 ◽  
Vol 16 (1) ◽  
pp. 49-55 ◽  
Author(s):  
J. Stenzel ◽  
C. Rühlmann ◽  
T. Lindner ◽  
S. Polei ◽  
S. Teipel ◽  
...  

Background: Positron-emission-tomography (PET) using 18F labeled florbetaben allows noninvasive in vivo-assessment of amyloid-beta (Aβ), a pathological hallmark of Alzheimer’s disease (AD). In preclinical research, [<sup>18</sup>F]-florbetaben-PET has already been used to test the amyloid-lowering potential of new drugs, both in humans and in transgenic models of cerebral amyloidosis. The aim of this study was to characterize the spatial pattern of cerebral uptake of [<sup>18</sup>F]-florbetaben in the APPswe/ PS1dE9 mouse model of AD in comparison to histologically determined number and size of cerebral Aβ plaques. Methods: Both, APPswe/PS1dE9 and wild type mice at an age of 12 months were investigated by smallanimal PET/CT after intravenous injection of [<sup>18</sup>F]-florbetaben. High-resolution magnetic resonance imaging data were used for quantification of the PET data by volume of interest analysis. The standardized uptake values (SUVs) of [<sup>18</sup>F]-florbetaben in vivo as well as post mortem cerebral Aβ plaque load in cortex, hippocampus and cerebellum were analyzed. Results: Visual inspection and SUVs revealed an increased cerebral uptake of [<sup>18</sup>F]-florbetaben in APPswe/ PS1dE9 mice compared with wild type mice especially in the cortex, the hippocampus and the cerebellum. However, SUV ratios (SUVRs) relative to cerebellum revealed only significant differences in the hippocampus between the APPswe/PS1dE9 and wild type mice but not in cortex; this differential effect may reflect the lower plaque area in the cortex than in the hippocampus as found in the histological analysis. Conclusion: The findings suggest that histopathological characteristics of Aβ plaque size and spatial distribution can be depicted in vivo using [<sup>18</sup>F]-florbetaben in the APPswe/PS1dE9 mouse model.


2020 ◽  
Vol 18 ◽  
Author(s):  
J. Singh ◽  
L. Ronsard ◽  
M. Pandey ◽  
R. Kapoor ◽  
V.G. Ramachandran ◽  
...  

Background: HIV-1 Nef is an important accessory protein with multiple effector functions. Genetic studies of HIV-1 Nef gene shows extensive genetic diversity and the functional studies have been carried out mostly with Nef derived from regions dominated by subtype B (North America & Europe). Objective: This study was carried out to characterize genetic variations of the Nef gene from HIV-1 infected individuals from North-India and to find out their functional implications. Methods: The unique representative variants were sub-cloned in eukaryotic expression vector and further characterized with respect to their ability to down regulate cell surface expression of CD4 and MHC-1molecules. Results: The phylogenetic analysis of Nef variants revealed sequence similarity with either consensus subtype B or B/C recombinants. Boot scan analysis of some of our variants showed homology to B/C recombinant and some to wild type Nef B. Extensive variations were observed in most of the variants. The dN/dS ratio revealed 80% purifying selection and 20% diversifying selection implying the importance of mutations in Nef variants. Intracellular stability of Nef variants differed greatly when compared with wild type Nef B and C. There were some variants that possessed mutations in the functional domains of Nef and responsible for its differential CD4 and MHC-1 down regulation activity. Conclusion: We observed enhanced biological activities in some of the variants, perhaps arising out of amino acid substitutions in their functional domains. The CD4 and MHC-1 down-regulation activity of Nef is likely to confer immense survival advantage allowing the most rare genotype in a population to become the most abundant after a single selection event.


Sign in / Sign up

Export Citation Format

Share Document