scholarly journals Roles of Glutamate Synthase, gltBD, and gltF in Nitrogen Metabolism of Escherichia coli and Klebsiella aerogenes

2001 ◽  
Vol 183 (22) ◽  
pp. 6607-6619 ◽  
Author(s):  
Thomas J. Goss ◽  
Ana Perez-Matos ◽  
Robert A. Bender

ABSTRACT Mutants of Escherichia coli and Klebsiella aerogenes that are deficient in glutamate synthase (glutamate-oxoglutarate amidotransferase [GOGAT]) activity have difficulty growing with nitrogen sources other than ammonia. Two models have been proposed to account for this inability to grow. One model postulated an imbalance between glutamine synthesis and glutamine degradation that led to a repression of the Ntr system and the subsequent failure to activate transcription of genes required for the use of alternative nitrogen sources. The other model postulated that mutations in gltB or gltD (which encode the subunits of GOGAT) were polar on a downstream gene,gltF, which is necessary for proper activation of gene expression by the Ntr system. The data reported here show that thegltF model is incorrect for three reasons: first, a nonpolar gltB and a polar gltD mutation of K. aerogenes both show the same phenotype; second,K. aerogenes and several other enteric bacteria lack a gene homologous to gltF; and third, mutants of E. coli whose gltF gene has been deleted show no defect in nitrogen metabolism. The argument that accumulated glutamine represses the Ntr system in gltB or gltDmutants is also incorrect, because these mutants can derepress the Ntr system normally so long as sufficient glutamate is supplied. Thus, we conclude that gltB or gltD mutants grow slowly on many poor nitrogen sources because they are starved for glutamate. Much of the glutamate formed by catabolism of alternative nitrogen sources is converted to glutamine, which cannot be efficiently converted to glutamate in the absence of GOGAT activity. Finally, GOGAT-deficient E. coli cells growing with glutamine as the sole nitrogen source increase their synthesis of the other glutamate-forming enzyme, glutamate dehydrogenase, severalfold, but this is still insufficient to allow rapid growth under these conditions.

A small survey of faecal bacteria from six species of reptile on West Java and the Krakatau Islands showed that species of Citrobacter were present in 17 out of 19 individual reptiles sampled. Species of Enterobacter, Klebsiella and Pseudomonas were also common but Escherichia coli was rare (present in only 2 out of 19 individual reptiles). Streptococcus faecalis was not detected in any reptile. Species of Pseudomonas were not detected in the faeces of any of the three gecko species sampled ( Gekko gecko, Gekko monarchus and Hemidactylus frenatus ), although they were detected in samples from the other three reptile species ( Mabuia multifasciata, Chrysopelea paradisi and Varanus salvtor ). Species of Citrobacter and Pseudomonas were more common and E. coli less common in reptiles than in mammals (rats and bats) living in the same area. The antibiotic-resistance patterns of the Citrobacter species were not significantly different between islands of the Krakatau group. Citrobacter species from reptiles were more resistant to chloramphenicol (43 % resistant) than those from mammals (8 % resistant). None of the isolates of Klebsiella and E. coli from reptiles was resistant to tetracycline.


2017 ◽  
Vol 18 (0) ◽  
Author(s):  
Camila Sampaio Cutrim ◽  
Raphael Ferreira de Barros ◽  
Robson Maia Franco ◽  
Marco Antonio Sloboda Cortez

Abstract The purpose of this study was to evaluate the behavior of E. coli O157:H7 during lactose hydrolysis and fermentation of traditional and low lactose yogurt. It also aimed to verify E. coli O157:H7 survival after 12 h of storage at 4 ºC ±1 ºC. Two different types of yogurts were prepared, two with whole milk and two with pre-hydrolyzed whole milk; in both groups one yogurt was inoculated with E. coli O157:H7 and the other one was not inoculated. The survival of E. coli and pH of yogurt were determined during fermentation and after 12-h refrigeration. The results showed that E. coli O157:H7 was able to grow during the fermentation period (from 4.34 log CFU.mL-1 to 6.13 log CFU.mL-1 in traditional yogurt and 4.34 log CFU.mL-1 to 6.16 log CFU.mL-1 in low lactose yogurt). The samples with E. coli O157:H7 showed gas formation and syneresis. Thus, E. coli O157:H7 was able to survive and grow during fermentation of traditional and low lactose yogurts affecting the manufacture technology. Moreover, milk contamination by E. coli before LAB addition reduces the growth of L. bulgaricus and S. thermophilus especially when associated with reduction of lactose content.


2017 ◽  
Vol 83 (20) ◽  
Author(s):  
Ryan Mercer ◽  
Oanh Nguyen ◽  
Qixing Ou ◽  
Lynn McMullen ◽  
Michael G. Gänzle

ABSTRACT The locus of heat resistance (LHR) is a 15- to 19-kb genomic island conferring exceptional heat resistance to organisms in the family Enterobacteriaceae, including pathogenic strains of Salmonella enterica and Escherichia coli. The complement of LHR-comprising genes that is necessary for heat resistance and the stress-induced or growth-phase-induced expression of LHR-comprising genes are unknown. This study determined the contribution of the seven LHR-comprising genes yfdX1 GI, yfdX2, hdeD GI, orf11, trx GI, kefB, and psiE GI by comparing the heat resistances of E. coli strains harboring plasmid-encoded derivatives of the different LHRs in these genes. (Genes carry a subscript “GI” [genomic island] if an ortholog of the same gene is present in genomes of E. coli.) LHR-encoded heat shock proteins sHSP20, ClpKGI, and sHSPGI are not sufficient for the heat resistance phenotype; YfdX1, YfdX2, and HdeD are necessary to complement the LHR heat shock proteins and to impart a high level of resistance. Deletion of trx GI, kefB, and psiE GI from plasmid-encoded copies of the LHR did not significantly affect heat resistance. The effect of the growth phase and the NaCl concentration on expression from the putative LHR promoter p2 was determined by quantitative reverse transcription-PCR and by a plasmid-encoded p2:GFP promoter fusion. The expression levels of exponential- and stationary-phase E. coli cells were not significantly different, but the addition of 1% NaCl significantly increased LHR expression. Remarkably, LHR expression in E. coli was dependent on a chromosomal copy of evgA. In conclusion, this study improved our understanding of the genes required for exceptional heat resistance in E. coli and factors that increase their expression in food. IMPORTANCE The locus of heat resistance (LHR) is a genomic island conferring exceptional heat resistance to several foodborne pathogens. The exceptional level of heat resistance provided by the LHR questions the control of pathogens by current food processing and preparation techniques. The function of LHR-comprising genes and their regulation, however, remain largely unknown. This study defines a core complement of LHR-encoded proteins that are necessary for heat resistance and demonstrates that regulation of the LHR in E. coli requires a chromosomal copy of the gene encoding EvgA. This study provides insight into the function of a transmissible genomic island that allows otherwise heat-sensitive enteric bacteria, including pathogens, to lead a thermoduric lifestyle and thus contributes to the detection and control of heat-resistant enteric bacteria in food.


2001 ◽  
Vol 13 (4) ◽  
pp. 308-311 ◽  
Author(s):  
Jacek Osek

A multiplex polymerase chain reaction (PCR) system was developed for identification of enterotoxigenic Escherichia coli (ETEC) strains and to differentiate them from other gram negative enteric bacteria. This test simultaneously amplifies heat-labile (LTI) and heat-stable (STI and STII) toxin sequences and the E. coli-specific universal stress protein ( uspA). The specificity of the method was validated by single PCR tests performed with the reference E. coli and non- E. coli strains and with bacteria isolated from pig feces. The multiplex PCR allowed the rapid and specific identification of enterotoxin-positive E. coli and may be used as a method for direct determination of ETEC and to differentiate them from other E. coli and gram-negative enteric isolates.


2006 ◽  
Vol 188 (21) ◽  
pp. 7449-7456 ◽  
Author(s):  
Douglas F. Browning ◽  
David J. Lee ◽  
Alan J. Wolfe ◽  
Jeffrey A. Cole ◽  
Stephen J. W. Busby

ABSTRACT The Escherichia coli K-12 nrf operon promoter can be activated fully by the FNR protein (regulator of fumarate and nitrate reduction) binding to a site centered at position −41.5. FNR-dependent transcription is suppressed by integration host factor (IHF) binding at position −54, and this suppression is counteracted by binding of the NarL or NarP response regulator at position −74.5. The E. coli acs gene is transcribed from a divergent promoter upstream from the nrf operon promoter. Transcription from the major acsP2 promoter is dependent on the cyclic AMP receptor protein and is modulated by IHF and Fis binding at multiple sites. We show that IHF binding to one of these sites, located at position −127 with respect to the nrf promoter, has a positive effect on nrf promoter activity. This activation is dependent on the face of the DNA helix, independent of IHF binding at other locations, and found only when NarL/NarP are not bound at position −74.5. Binding of NarL/NarP appears to insulate the nrf promoter from the effects of IHF. The acs-nrf regulatory region is conserved in other pathogenic E. coli strains and related enteric bacteria but differs in Salmonella enterica serovar Typhimurium.


mSphere ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Dongxing Tian ◽  
Bingjie Wang ◽  
Hong Zhang ◽  
Fen Pan ◽  
Chun Wang ◽  
...  

ABSTRACT The continuous emergence of novel New Delhi metallo-β-lactamase-5 (NDM-5)-producing Enterobacteriaceae isolates is receiving more and more public attention. Twenty-two NDM-5-producing strains were identified from 146 carbapenemase-producing Enterobacteriaceae (CRE) strains isolated from pediatric patients between January and March 2017, indicating that the blaNDM-5 gene has spread to children. All 22 isolates, including 16 Klebsiella pneumoniae strains, four Klebsiella aerogenes strains, and two Escherichia coli strains, showed significantly high resistance to β-lactam antibiotics (except aztreonam) but remained susceptible to tigecycline and colistin. K. pneumoniae and K. aerogenes strains were respectively defined as homologous clonal isolates by pulsed-field gel electrophoresis (PFGE). Multilocus sequence typing (MLST) results confirmed the genetic relatedness with all K. pneumoniae strains belonging to sequence type (ST) 48. Two E. coli isolates (ST617 and ST1236) were considered genetically unrelated. Twenty-two blaNDM-5 plasmids were positive for the IncX3 amplicon and showed almost identical profiles after digestion with HindIII and EcoRI. Four representative strains (K. pneumoniae K725, K. aerogenes CR33, E. coli Z214, and E. coli Z244) were selected for further study. Plasmids harboring blaNDM-5 showed strong stability in both clinical isolates and transconjugants, without apparent plasmid loss after 100 serial generations. S1-PFGE followed by Southern blot analysis demonstrated that the blaNDM-5 gene was located on an ∼46-kb plasmid. Plasmid sequences of pNDM-K725, pNDM-CR33, and pNDM-Z214 were almost identical but were slightly different from that of pNDM-Z244. Compared with pNDM-Z244, ΔISAba125 and partial copies of IS3000 were missing. The genetic backgrounds of the blaNDM-5 gene in four strains were slightly different from that of the typical pNDM_MGR194. This study comprehensively characterized the horizontal gene transfer of the blaNDM-5 gene among different Enterobacteriaceae isolates in pediatric patients, and the IncX3-type plasmid was responsible for the spread. IMPORTANCE The emergence of CRE strains resistant to multiple antibiotics is considered a substantial threat to human health. Therefore, all the efforts to provide a detailed molecular transmission mechanism of specific drug resistance can contribute positively to prevent the further spread of multidrug-resistant bacteria. Although the new superbug harboring blaNDM-5 has been reported in many countries, it was mostly identified among E. coli strains, and the gene transfer mechanism has not been fully recognized and studied. In this work, we identified 22 blaNDM-5-positive strains in different species of Enterobacteriaceae, including 16 Klebsiella pneumoniae strains, four Klebsiella aerogenes strains, and two Escherichia coli strains, which indicated the horizontal gene transfer of blaNDM-5 among Enterobacteriaceae strains in pediatric patients. Moreover, blaNDM-5 was located on a 46-kb IncX3 plasmid, which is possibly responsible for this widespread horizontal gene transfer. The different genetic contexts of the blaNDM-5 gene indicated some minor evolutions of the plasmid, based on the complete sequences of the blaNDM-5 plasmids. These findings are of great significance to understand the transmission mechanism of drug resistance genes, develop anti-infection treatment, and take effective infection control measures.


2011 ◽  
Vol 56 (No. 4) ◽  
pp. 149-155 ◽  
Author(s):  
P. Alexa ◽  
L. Konstantinova ◽  
Z. Sramkova-Zajacova

A survey to estimate the prevalence of verotoxigenic E. coli (VTEC) or enterohaemorrhagic E. coli (EHEC) in rectal swabs from healthy dairy cattle aged three weeks, three months and one year was conducted in three herds from the Czech Republic. Screening for the presence of the stx1, stx2 and eaeA genes in faecal swab cultures was performed by PCR, and in positive samples, isolated colonies were examined. Immunomagnetic separation was used for the isolation of the VTEC serogroup O157 from samples. VTEC were detected in animals from all three herds under study. In the group of 3-week-old calves, VTEC were only detected in samples collected in the summer months. However, in the other age-groups, VTEC were detected in both the summer and winter months. EHEC shedding was observed in 30 to 100% of the total samples collected from cattle aged three months and one year in the summer months, and in 30 to 60% of samples taken in the winter months. EHEC strains of serogroup O157 were detected in two herds. The range of verotoxins shed by VTEC isolates of serogroup O157 differed between herds. Besides serogroup O157, additional EHEC belonging to the antigen groups O26, O103, O128 and O153 have been identified, and in some of them, no somatic antigen was detected.


2017 ◽  
Vol 83 (6) ◽  
Author(s):  
James R. Johnson ◽  
Stephen B. Porter ◽  
Brian Johnston ◽  
Paul Thuras ◽  
Sarah Clock ◽  
...  

ABSTRACT Chicken meat products are hypothesized to be vehicles for transmitting antimicrobial-resistant and extraintestinal pathogenic Escherichia coli (ExPEC) to consumers. To reassess this hypothesis in the current era of heightened concerns about antimicrobial use in food animals, we analyzed 175 chicken-source E. coli isolates from a 2013 Consumer Reports national survey. Isolates were screened by PCR for ExPEC-defining virulence genes. The 25 ExPEC isolates (12% of 175) and a 2:1 randomly selected set of 50 non-ExPEC isolates were assessed for their phylogenetic/clonal backgrounds and virulence genotypes for comparison with their resistance profiles and the claims on the retail packaging label (“organic,” “no antibiotics,” and “natural”). Compared with the findings for non-ExPEC isolates, the group of ExPEC isolates had a higher prevalence of phylogroup B2 isolates (44% versus 4%; P < 0.001) and a lower prevalence of phylogroup A isolates (4% versus 30%; P = 0.001), a higher prevalence of multiple individual virulence genes, higher virulence scores (median, 11 [range, 4 to 16] versus 8 [range, 1 to 14]; P = 0.001), and higher resistance scores (median, 4 [range, 0 to 8] versus 3 [range, 0 to 10]; P < 0.001). All five isolates of sequence type 131 (ST131) were ExPEC (P = 0.003), were as extensively resistant as the other isolates tested, and had higher virulence scores than the other isolates tested (median, 12 [range, 11 to 13] versus 8 [range, 1 to 16]; P = 0.005). Organic labeling predicted lower resistance scores (median, 2 [range, 0 to 3] versus 4 [range, 0 to 10]; P = 0.008) but no difference in ExPEC status or virulence scores. These findings document a persisting reservoir of extensively antimicrobial-resistant ExPEC isolates, including isolates from ST131, in retail chicken products in the United States, suggesting a potential public health threat. IMPORTANCE We found that among Escherichia coli isolates from retail chicken meat products purchased across the United States in 2013 (many of these isolates being extensively antibiotic resistant), a minority had genetic profiles suggesting an ability to cause extraintestinal infections in humans, such as urinary tract infection, implying a risk of foodborne disease. Although isolates from products labeled “organic” were less extensively antibiotic resistant than other isolates, they did not appear to be less virulent. These findings suggest that retail chicken products in the United States, even if they are labeled “organic,” pose a potential health threat to consumers because they are contaminated with extensively antibiotic-resistant and, presumably, virulent E. coli isolates.


2003 ◽  
Vol 185 (13) ◽  
pp. 3871-3877 ◽  
Author(s):  
Nobuhisa Furuya ◽  
Teruya Komano

ABSTRACT The origin of transfer (oriT) of a bacterial plasmid plays a key role in both the initiation and termination of conjugative DNA transfer. We have previously shown that a conjugation-dependent recombination between the tandem R64 oriT sequences cloned into pHSG398 occurred, resulting in the deletion of the intervening sequence during DNA transfer. In this study, we tandemly cloned two oriT sequences of IncI1 plasmid R64 into pUC18. Specific recombination between the two oriT sequences in pUC18 was observed within Escherichia coli cells harboring mini-R64. This recombination was found to be independent of both the recA gene and conjugative DNA transfer. The R64 genes nikA and nikB, required for conjugal DNA processing, were essential for this recombination. Although a fully active 92-bp oriT sequence was required at one site for the recombination, the 44-bp oriT core sequence was sufficient at the other site. Furthermore, when two oriT sequences were tandemly cloned into the single-stranded phage vector M13 and propagated within E. coli cells, recombination between the two oriT sequences was observed, depending on the nikB gene. These results suggest that the R64 relaxase protein NikB can execute cleavage and rejoining of single-stranded oriT DNA within E. coli cells, whereas such a reaction in double-stranded oriT DNA requires collaboration of the two relaxosome proteins, NikA and NikB.


2014 ◽  
Vol 63 (2) ◽  
pp. 218-221 ◽  
Author(s):  
David A. Bookstaver ◽  
Christopher M. Bland ◽  
Mitchell W. Woodberry ◽  
Karon B. Mansell

This study attempted to determine whether cefuroxime was superior to cephalothin as a surrogate marker for cefpodoxime among urinary tract isolates. The MicroScan system (Siemens) was used to determine susceptibility for cephalothin and cefuroxime on consecutive cultures with a colony count of ≥50 000 organisms. Simultaneously, an Etest (bioMérieux) for cefpodoxime was conducted. The cefpodoxime interpretation was compared to that of the other two agents, and the categorical agreement was calculated, defined as the percentage of identical susceptibility interpretations. Cefuroxime (83 %) had a significantly higher categorical agreement than cephalothin (63 %) among 300 isolates (P<0.01). The major error rate was 16 % for cephalothin and 3 % for cefuroxime. The very major error rate was 7 % for cephalothin and 14 % for cefuroxime among the 14 cefpodoxime-resistant isolates. For Escherichia coli, the major error rates were 15 % and 1 % for cephalothin and cefuroxime, respectively. Very major error rates were 9 % for both agents. Cefuroxime was a better predictor of cefpodoxime susceptibility than cephalothin, and appears to be the preferred surrogate agent for the MicroScan system, particularly for E. coli.


Sign in / Sign up

Export Citation Format

Share Document