scholarly journals Functional Analysis of the Bacillus subtilis Zur Regulon

2002 ◽  
Vol 184 (23) ◽  
pp. 6508-6514 ◽  
Author(s):  
Ahmed Gaballa ◽  
Tao Wang ◽  
Rick W. Ye ◽  
John D. Helmann

ABSTRACT The Bacillus subtilis zinc uptake repressor (Zur) regulates genes involved in zinc uptake. We have used DNA microarrays to identify genes that are derepressed in a zur mutant. In addition to members of the two previously identified Zur-regulated operons (yciC and ycdHI-yceA), we identified two other genes, yciA and yciB, as targets of Zur regulation. Electrophoretic mobility shift experiments demonstrated that all three operons are direct targets of Zur regulation. Zur binds to an ∼28-bp operator upstream of the yciA gene, as judged by DNase I footprinting, and similar operator sites are found preceding each of the previously described target operons, yciC and ycdHI-yceA. Analysis of a yciA-lacZ fusion indicates that this operon is induced under zinc starvation conditions and derepressed in the zur mutant. Phenotypic analyses suggest that the YciA, YciB, and YciC proteins may function as part of the same Zn(II) transport pathway. Mutation of yciA or yciC, singly or in combination, had little effect on growth of the wild-type strain but significantly impaired the growth of the ycdH mutant under conditions of zinc limitation. Since the YciA, YciB, and YciC proteins are not obviously related to any known transporter family, they may define a new class of metal ion uptake system. Mutant strains lacking all three identified zinc uptake systems (yciABC, ycdHI-yceA, and zosA) are dependent on micromolar levels of added zinc for optimal growth.

Microbiology ◽  
2014 ◽  
Vol 160 (2) ◽  
pp. 243-260 ◽  
Author(s):  
Öykü İrigül-Sönmez ◽  
Türkan E. Köroğlu ◽  
Büşra Öztürk ◽  
Ákos T. Kovács ◽  
Oscar P. Kuipers ◽  
...  

The lutR gene, encoding a product resembling a GntR-family transcriptional regulator, has previously been identified as a gene required for the production of the dipeptide antibiotic bacilysin in Bacillus subtilis. To understand the broader regulatory roles of LutR in B. subtilis, we studied the genome-wide effects of a lutR null mutation by combining transcriptional profiling studies using DNA microarrays, reverse transcription quantitative PCR, lacZ fusion analyses and gel mobility shift assays. We report that 65 transcriptional units corresponding to 23 mono-cistronic units and 42 operons show altered expression levels in lutR mutant cells, as compared with lutR + wild-type cells in early stationary phase. Among these, 11 single genes and 25 operons are likely to be under direct control of LutR. The products of these genes are involved in a variety of physiological processes associated with the onset of stationary phase in B. subtilis, including degradative enzyme production, antibiotic production and resistance, carbohydrate utilization and transport, nitrogen metabolism, phosphate uptake, fatty acid and phospholipid biosynthesis, protein synthesis and translocation, cell-wall metabolism, energy production, transfer of mobile genetic elements, induction of phage-related genes, sporulation, delay of sporulation and cannibalism, and biofilm formation. Furthermore, an electrophoretic mobility shift assay performed in the presence of both SinR and LutR revealed a close overlap between the LutR and SinR targets. Our data also revealed a significant overlap with the AbrB regulon. Together, these findings reveal that LutR is part of the global complex, interconnected regulatory systems governing adaptation of bacteria to the transition from exponential growth to stationary phase.


Microbiology ◽  
2014 ◽  
Vol 160 (1) ◽  
pp. 91-101 ◽  
Author(s):  
Kambiz Morabbi Heravi ◽  
Josef Altenbuchner

Expression of mannitol utilization genes in Bacillus subtilis is directed by P mtlA , the promoter of the mtlAFD operon, and P mtlR , the promoter of the MtlR activator. MtlR contains phosphoenolpyruvate-dependent phosphotransferase system (PTS) regulation domains, called PRDs. The activity of PRD-containing MtlR is mainly regulated by the phosphorylation/dephosphorylation of its PRDII and EIIBGat-like domains. Replacing histidine 342 and cysteine 419 residues, which are the targets of phosphorylation in these two domains, by aspartate and alanine provided MtlR-H342D C419A, which permanently activates P mtlA in vivo. In the mtlR-H342D C419A mutant, P mtlA was active, even when the mtlAFD operon was deleted from the genome. The mtlR-H342D C419A allele was expressed in an Escherichia coli strain lacking enzyme I of the PTS. Electrophoretic mobility shift assays using purified MtlR-H342D C419A showed an interaction between the MtlR double-mutant and the Cy5-labelled P mtlA and P mtlR DNA fragments. These investigations indicate that the activated MtlR functions regardless of the presence of the mannitol-specific transporter (MtlA). This is in contrast to the proposed model in which the sequestration of MtlR by the MtlA transporter is necessary for the activity of MtlR. Additionally, DNase I footprinting, construction of P mtlA -P licB hybrid promoters, as well as increasing the distance between the MtlR operator and the −35 box of P mtlA revealed that the activated MtlR molecules and RNA polymerase holoenzyme likely form a class II type activation complex at P mtlA and P mtlR during transcription initiation.


2002 ◽  
Vol 184 (8) ◽  
pp. 2148-2154 ◽  
Author(s):  
Susan H. Fisher ◽  
Lewis V. Wray

ABSTRACT Expression of the two Bacillus subtilis genes encoding l-asparaginase is controlled by independent regulatory factors. The ansZ gene (formerly yccC) was shown by mutational analysis to encode a functional l-asparaginase, the expression of which is activated during nitrogen-limited growth by the TnrA transcription factor. Gel mobility shift and DNase I footprinting experiments indicate that TnrA regulates ansZ expression by binding to a DNA site located upstream of the ansZ promoter. The expression of the ansA gene, which encodes the second l-asparaginase, was found to be induced by asparagine. The ansA repressor, AnsR, was shown to negatively regulate its own expression.


2000 ◽  
Vol 182 (22) ◽  
pp. 6374-6381 ◽  
Author(s):  
Bastiaan P. Krom ◽  
Jessica B. Warner ◽  
Wil N. Konings ◽  
Juke S. Lolkema

ABSTRACT Citrate uptake in Bacillus subtilis is stimulated by a wide range of divalent metal ions. The metal ions were separated into two groups based on the expression pattern of the uptake system. The two groups correlated with the metal ion specificity of two homologousB. subtilis secondary citrate transporters, CitM and CitH, upon expression in Escherichia coli. CitM transported citrate in complex with Mg2+, Ni2+, Mn2+, Co2+, and Zn2+ but not in complex with Ca2+, Ba2+, and Sr2+. CitH transported citrate in complex with Ca2+, Ba2+, and Sr2+ but not in complex with Mg2+, Ni2+, Mn2+, Co2+, and Zn2+. Both transporters did not transport free citrate. Nevertheless, free citrate uptake could be demonstrated in B. subtilis, indicating the expression of at least a third citrate transporter, whose identity is not known. For both the CitM and CitH transporters it was demonstrated that the metal ion promoted citrate uptake and, vice versa, that citrate promoted uptake of the metal ion, indicating that the complex is the transported species. The results indicate that CitM and CitH are secondary transporters that transport complexes of divalent metal ions and citrate but with a complementary metal ion specificity. The potential physiological function of the two transporters is discussed.


2000 ◽  
Vol 182 (7) ◽  
pp. 1916-1922 ◽  
Author(s):  
Xianmin Zeng ◽  
Hans H. Saxild ◽  
Robert L. Switzer

ABSTRACT Transcription of the Bacillus subtilis dra-nupC-pdpoperon is repressed by the DeoR repressor protein. The DeoR repressor with an N-terminal His tag was overproduced with a plasmid under control of a phage T5 promoter in Escherichia coli and was purified to near homogeneity by one affinity chromatography step. Gel filtration experimental results showed that native DeoR has a mass of 280 kDa and appears to exist as an octamer. Binding of DeoR to the operator DNA of thedra-nupC-pdp operon was characterized by using an electrophoretic gel mobility shift assay. An apparent dissociation constant of 22 nM was determined for binding of DeoR to operator DNA, and the binding curve indicated that the binding of DeoR to the operator DNA was cooperative. In the presence of low-molecular-weight effector deoxyribose-5-phosphate, the dissociation constant was higher than 1,280 nM. The dissociation constant remained unchanged in the presence of deoxyribose-1-phosphate. DNase I footprinting exhibited a protected region that extends over more than 43 bp, covering a palindrome together with a direct repeat to one half of the palindrome and the nucleotides between them.


2006 ◽  
Vol 188 (10) ◽  
pp. 3664-3673 ◽  
Author(s):  
Juliane Ollinger ◽  
Kyung-Bok Song ◽  
Haike Antelmann ◽  
Michael Hecker ◽  
John D. Helmann

ABSTRACT The Bacillus subtilis ferric uptake regulator (Fur) protein mediates the iron-dependent repression of at least 20 operons encoding ∼40 genes. We investigated the physiological roles of Fur-regulated genes by the construction of null mutations in 14 transcription units known or predicted to function in siderophore biosynthesis or iron uptake. We demonstrate that ywbLMN, encoding an elemental iron uptake system orthologous to the copper oxidase-dependent Fe(III) uptake system of Saccharomyces cerevisiae, is essential for growth in low iron minimal medium lacking citric acid. 2,3-Dihydroxybenzoyl-glycine (Itoic acid), the siderophore precursor produced by laboratory strains of B. subtilis, is of secondary importance. In the presence of citrate, the YfmCDEF ABC transporter is required for optimal growth. B. subtilis is unable to grow in minimal medium containing the iron chelator EDDHA unless the ability to synthesize the intact bacillibactin siderophore is restored (by the introduction of a functional sfp gene) or exogenous siderophores are provided. Utilization of the catecholate siderophores bacillibactin and enterobactin requires the FeuABC importer and the YusV ATPase. Utilization of hydroxamate siderophores requires the FhuBGC ABC transporter together with the FhuD (ferrichrome) or YxeB (ferrioxamine) substrate-binding proteins. Growth with schizokinen or arthrobactin is at least partially dependent on the YfhA YfiYZ importer and the YusV ATPase. We have also investigated the effects of a fur mutation on the proteome and documented the derepression of 11 Fur-regulated proteins, including a newly identified thioredoxin reductase homolog, YcgT.


1991 ◽  
Vol 11 (3) ◽  
pp. 1488-1499 ◽  
Author(s):  
H J Roth ◽  
G C Das ◽  
J Piatigorsky

Expression of the chicken beta B1-crystallin gene was examined. Northern (RNA) blot and primer extension analyses showed that while abundant in the lens, the beta B1 mRNA is absent from the liver, brain, heart, skeletal muscle, and fibroblasts of the chicken embryo, suggesting lens specificity. Promoter fragments ranging from 434 to 126 bp of 5'-flanking sequence (plus 30 bp of exon 1) of the beta B1 gene fused to the bacterial chloramphenicol acetyltransferase gene functioned much more efficiently in transfected embryonic chicken lens epithelial cells than in transfected primary muscle fibroblasts or HeLa cells. Transient expression of recombinant plasmids in cultured lens cells, DNase I footprinting, in vitro transcription in a HeLa cell extract, and gel mobility shift assays were used to identify putative functional promoter elements of the beta B1-crystallin gene. Sequence analysis revealed a number of potential regulatory elements between positions -126 and -53 of the beta B1 promoter, including two Sp1 sites, two octamer binding sequence-like sites (OL-1 and OL-2), and two polyomavirus enhancer-like sites (PL-1 and PL-2). Deletion and site-specific mutation experiments established the functional importance of PL-1 (-116 to -102), PL-2 (-90 to -76), and OL-2 (-75 to -68). DNase I footprinting using a lens or a HeLa cell nuclear extract and gel mobility shifts using a lens nuclear extract indicated the presence of putative lens transcription factors binding to these DNA sequences. Competition experiments provided evidence that PL-1 and PL-2 recognize the same or very similar factors, while OL-2 recognizes a different factor. Our data suggest that the same or closely related transcription factors found in many tissues are used for expression of the chicken beta B1-crystallin gene in the lens.


1990 ◽  
Vol 10 (12) ◽  
pp. 6524-6532
Author(s):  
S M Frisch ◽  
J H Morisaki

Proteolysis by type IV collagenase (T4) has been implicated in the process of tumor metastasis. The T4 gene is expressed in fibroblasts, but not in normal epithelial cells, and its expression is specifically repressed by the E1A oncogene of adenovirus. We present an investigation of the transcriptional elements responsible for basal, E1A-repressible, and tissue-specific expression. 5'-Deletion analysis, DNase I footprinting, and gel mobility shift assays revealed a strong, E1A-repressible enhancer element, r2, located about 1,650 bp upstream of the start site. This enhancer bound a protein with binding specificity very similar to that of the transcription factor AP-2. A potent silencer sequence was found 2 to 5 bp downstream of this enhancer. The silencer repressed transcription from either r2 or AP-1 enhancer elements and in the context of either type IV collagenase or thymidine kinase (tk) gene core promoters; enhancerless transcription from the latter core promoter was also repressed. Comprising the silencer were two contiguous, autonomously functioning silencer elements. Negative regulation of T4 transcription by at least two factors was demonstrated. mcf-7 proteins specifically binding both elements were detected by gel mobility shift assays; a protein of approximately 185 kDa that bound to one of these elements was detected by DNA-protein cross-linking. The silencer repressed transcription, in an r2 enhancer-tk promoter context, much more efficiently in T4-nonproducing cells (mcf-7 or HeLa) than in T4-producing cells (HT1080), suggesting that cell type-specific silencing may contribute to the regulation of this gene.


2001 ◽  
Vol 204 (6) ◽  
pp. 1053-1061 ◽  
Author(s):  
A. Sacher ◽  
A. Cohen ◽  
N. Nelson

Transition metals are essential for many metabolic processes, and their homeostasis is crucial for life. Metal-ion transporters play a major role in maintaining the correct concentrations of the various metal ions in living cells. Little is known about the transport mechanism of metal ions by eukaryotic cells. Some insight has been gained from studies of the mammalian transporter DCT1 and the yeast transporter Smf1p by following the uptake of various metal ions and from electrophysiological experiments using Xenopus laevis oocytes injected with RNA copies (c-RNA) of the genes for these transporters. Both transporters catalyze the proton-dependent uptake of divalent cations accompanied by a ‘slippage’ phenomenon of different monovalent cations unique to each transporter. Here, we further characterize the transport activity of DCT1 and Smf1p, their substrate specificity and their transport properties. We observed that Zn(2+) is not transported through the membrane of Xenopus laevis oocytes by either transporter, even though it inhibits the transport of the other metal ions and enables protons to ‘slip’ through the DCT1 transporter. A special construct (Smf1p-s) was made to enhance Smf1p activity in oocytes to enable electrophysiological studies of Smf1p-s-expressing cells. 54Mn(2+) uptake by Smf1p-s was measured at various holding potentials. In the absence of Na(+) and at pH 5.5, metal-ion uptake was not affected by changes in negative holding potentials. Elevating the pH of the medium to 6.5 caused metal-ion uptake to be influenced by the holding potential: ion uptake increased when the potential was lowered. Na(+) inhibited metal-ion uptake in accordance with the elevation of the holding potential. A novel clutch mechanism of ion slippage that operates via continuously variable stoichiometry between the driving-force pathway (H(+)) and the transport pathway (divalent metal ions) is proposed. The possible physiological advantages of proton slippage through DCT1 and of Na(+) slippage through Smf1p are discussed.


Sign in / Sign up

Export Citation Format

Share Document