scholarly journals Bacillus subtilis functional genomics: global characterization of the stringent response by proteome and transcriptome analysis

2002 ◽  
Vol 184 (9) ◽  
pp. 2500-2520 ◽  
Author(s):  
Christine Eymann ◽  
Georg Homuth ◽  
Christian Scharf ◽  
Michael Hecker

ABSTRACT The stringent response in Bacillus subtilis was characterized by using proteome and transcriptome approaches. Comparison of protein synthesis patterns of wild-type and relA mutant cells cultivated under conditions which provoke the stringent response revealed significant differences. According to their altered synthesis patterns in response to dl-norvaline, proteins were assigned to four distinct classes: (i) negative stringent control, i.e., strongly decreased protein synthesis in the wild type but not in the relA mutant (e.g., r-proteins); (ii) positive stringent control, i.e., induction of protein synthesis in the wild type only (e.g., YvyD and LeuD); (iii) proteins that were induced independently of RelA (e.g., YjcI); and (iv) proteins downregulated independently of RelA (e.g., glycolytic enzymes). Transcriptome studies based on DNA macroarray techniques were used to complement the proteome data, resulting in comparable induction and repression patterns of almost all corresponding genes. However, a comparison of both approaches revealed that only a subset of RelA-dependent genes or proteins was detectable by proteomics, demonstrating that the transcriptome approach allows a more comprehensive global gene expression profile analysis. The present study presents the first comprehensive description of the stringent response of a bacterial species and an almost complete map of protein-encoding genes affected by (p)ppGpp. The negative stringent control concerns reactions typical of growth and reproduction (ribosome synthesis, DNA synthesis, cell wall synthesis, etc.). Negatively controlled unknown y-genes may also code for proteins with a specific function during growth and reproduction (e.g., YlaG). On the other hand, many genes are induced in a RelA-dependent manner, including genes coding for already-known and as-yet-unknown proteins. A passive model is preferred to explain this positive control relying on the redistribution of the RNA polymerase under the influence of (p)ppGpp.

2011 ◽  
Vol 55 (9) ◽  
pp. 4326-4337 ◽  
Author(s):  
Anna-Barbara Hachmann ◽  
Elif Sevim ◽  
Ahmed Gaballa ◽  
David L. Popham ◽  
Haike Antelmann ◽  
...  

ABSTRACTDaptomycin (DAP) is a cyclic lipopeptide that disrupts the functional integrity of the cell membranes of Gram-positive bacteria in a Ca2+-dependent manner. Here we present genetic, genomic, and phenotypic analyses of an evolved DAP-resistant isolate, DapR1, from the model bacteriumBacillus subtilis168. DapR1 was obtained by serial passages with increasing DAP concentrations, is 30-fold more resistant than the parent strain, and displays cross-resistance to vancomycin, moenomycin, and bacitracin. DapR1 is characterized by aberrant septum placement, notably thickened peptidoglycan at the cell poles, and pleiotropic alterations at both the transcriptome and proteome levels. Genome sequencing of DapR1 revealed 44 point mutations, 31 of which change protein sequences. An intermediate isolate that was 20-fold more resistant to DAP than the wild type had only three of these point mutations: mutations affecting the cell shape modulator genemreB, the stringent response generelA, and the phosphatidylglycerol synthase genepgsA. Genetic reconstruction studies indicated that thepgsA(A64V) allele is primarily responsible for DAP resistance. Allelic replacement with wild-typepgsArestored DAP sensitivity to wild-type levels. The additional point mutations in the evolved strain may contribute further to DAP resistance, serve to compensate for the deleterious effects of altered membrane composition, or represent neutral changes. These results suggest a resistance mechanism by which reduced levels of phosphatidylglycerol decrease the net negative charge of the membrane, thereby weakening interaction with the positively charged Ca2+-DAP complex.


2017 ◽  
Vol 199 (20) ◽  
Author(s):  
Ulf Gerth ◽  
Eleonora Krieger ◽  
Daniela Zühlke ◽  
Alexander Reder ◽  
Uwe Völker ◽  
...  

ABSTRACT Bacillus subtilis possesses two glyceraldehyde-3-phosphate dehydrogenases with opposite roles, the glycolytic NAD-dependent GapA and the NADP-dependent GapB enzyme, which is exclusively required during gluconeogenesis but not active under conditions promoting glycolysis. We propose that proteins that are no longer needed will be recognized and proteolyzed by Clp proteases and thereby recycled. To test this postulation, we analyzed the stability of the glycolytic enzyme GapA and the gluconeogenetic enzyme GapB in the presence and absence of glucose. It turned out that GapA remained rather stable under both glycolytic and gluconeogenetic conditions. In contrast, the gluconeogenetic enzyme GapB was degraded after a shift from malate to glucose (i.e., from gluconeogenesis to glycolysis), displaying an estimated half-life of approximately 3 h. Comparative in vivo pulse-chase labeling and immunoprecipitation experiments of the wild-type strain and isogenic mutants identified the ATP-dependent ClpCP protease as the enzyme responsible for the degradation of GapB. However, arginine protein phosphorylation, which was recently described as a general tagging mechanism for protein degradation, did not seem to play a role in GapB proteolysis, because GapB was also degraded in a mcsB mutant, lacking arginine kinase, in the same manner as in the wild type. IMPORTANCE GapB, the NADP-dependent glyceraldehyde-3-phosphosphate dehydrogenase, is essential for B. subtilis under gluconeogenetic conditions. However, after a shift to glycolytic conditions, GapB loses its physiological function within the cell and becomes susceptible to degradation, in contrast to GapA, the glycolytic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase, which remains stable under glycolytic and gluconeogenetic conditions. Subsequently, GapB is proteolyzed in a ClpCP-dependent manner. According to our data, the arginine kinase McsB is not involved as adaptor protein in this process. ClpCP appears to be in charge in the removal of inoperable enzymes in B. subtilis, which is a strictly regulated process in which the precise recognition mechanism(s) remains to be identified.


1975 ◽  
Vol 152 (3) ◽  
pp. 517-522 ◽  
Author(s):  
A Ogilvie ◽  
K Wiebauer ◽  
W Kersten

The antibiotic granaticin interferes in Bacillus subtilis with the charging process of tRNALeu causing both the arrest of protein synthesis and bacteriostasis [A. Ogilvie, K. Wiebauer & W. Kersten (1975) Biochem. J. 152, 511-515]. A concomitant inhibition of RNA synthesis is observed. This inhibition was studied with mutant strains of B. subtilis. 2. Granaticin inhibits protein and RNA synthesis in stringently controlled B. subtilis (rel+) to about the same extent. In a relaxed mutant strain (rel-) of B. subtilis, protein synthesis is also inhibited, but the accumulation of RNA continues after the addition of the drug. 3. Chloramphenicol, which is known to abolish the stringent control mechanism, added simultaneously with granaticin, allows the synthesis of RNA to proceed in the stringent strain. 4. Guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp) accumulate in granaticin-treated stringently controlled B. subtilis but not in the rel- mutant. 5. It is concluded that the inhibition of RNA synthesis granaticin can adequately be explained as a stringent response caused by the interference by the drug with leucyl-tRNA synthetase.


2020 ◽  
Vol 22 (1) ◽  
pp. 152
Author(s):  
Dorota Dabrowska ◽  
Justyna Mozejko-Ciesielska ◽  
Tomasz Pokój ◽  
Slawomir Ciesielski

Pseudomonas putida’s versatility and metabolic flexibility make it an ideal biotechnological platform for producing valuable chemicals, such as medium-chain-length polyhydroxyalkanoates (mcl-PHAs), which are considered the next generation bioplastics. This bacterium responds to environmental stimuli by rearranging its metabolism to improve its fitness and increase its chances of survival in harsh environments. Mcl-PHAs play an important role in central metabolism, serving as a reservoir of carbon and energy. Due to the complexity of mcl-PHAs’ metabolism, the manner in which P. putida changes its transcriptome to favor mcl-PHA synthesis in response to environmental stimuli remains unclear. Therefore, our objective was to investigate how the P. putida KT2440 wild type and mutants adjust their transcriptomes to synthesize mcl-PHAs in response to nitrogen limitation when supplied with sodium gluconate as an external carbon source. We found that, under nitrogen limitation, mcl-PHA accumulation is significantly lower in the mutant deficient in the stringent response than in the wild type or the rpoN mutant. Transcriptome analysis revealed that, under N-limiting conditions, 24 genes were downregulated and 21 were upregulated that were common to all three strains. Additionally, potential regulators of these genes were identified: the global anaerobic regulator (Anr, consisting of FnrA, Fnrb, and FnrC), NorR, NasT, the sigma54-dependent transcriptional regulator, and the dual component NtrB/NtrC regulator all appear to play important roles in transcriptome rearrangement under N-limiting conditions. The role of these regulators in mcl-PHA synthesis is discussed.


2007 ◽  
Vol 190 (4) ◽  
pp. 1209-1218 ◽  
Author(s):  
Raquel Paes da Rocha ◽  
Apuã César de Miranda Paquola ◽  
Marilis do Valle Marques ◽  
Carlos Frederico Martins Menck ◽  
Rodrigo S. Galhardo

ABSTRACT The SOS regulon is a paradigm of bacterial responses to DNA damage. A wide variety of bacterial species possess homologs of lexA and recA, the central players in the regulation of the SOS circuit. Nevertheless, the genes actually regulated by the SOS have been determined only experimentally in a few bacterial species. In this work, we describe 37 genes regulated in a LexA-dependent manner in the alphaproteobacterium Caulobacter crescentus. In agreement with previous results, we have found that the direct repeat GTTCN7GTTC is the SOS operator of C. crescentus, which was confirmed by site-directed mutagenesis studies of the imuA promoter. Several potential promoter regions containing the SOS operator were identified in the genome, and the expression of the corresponding genes was analyzed for both the wild type and the lexA strain, demonstrating that the vast majority of these genes are indeed SOS regulated. Interestingly, many of these genes encode proteins with unknown functions, revealing the potential of this approach for the discovery of novel genes involved in cellular responses to DNA damage in prokaryotes, and illustrating the diversity of SOS-regulated genes among different bacterial species.


2005 ◽  
Vol 187 (14) ◽  
pp. 4698-4706 ◽  
Author(s):  
Juan Campos-Guillén ◽  
Patricia Bralley ◽  
George H. Jones ◽  
David H. Bechhofer ◽  
Gabriela Olmedo-Alvarez

ABSTRACT Polyadenylation plays a role in decay of some bacterial mRNAs, as well as in the quality control of stable RNA. In Escherichia coli, poly(A) polymerase I (PAP I) is the main polyadenylating enzyme, but the addition of 3′ tails also occurs in the absence of PAP I via the synthetic activity of polynucleotide phosphorylase (PNPase). The nature of 3′-tail addition in Bacillus subtilis, which lacks an identifiable PAP I homologue, was studied. Sizing of poly(A) sequences revealed a similar pattern in wild-type and PNPase-deficient strains. Sequencing of 152 cloned cDNAs, representing 3′-end sequences of nontranslated and translated RNAs, revealed modified ends mostly on incomplete transcripts, which are likely to be decay intermediates. The 3′-end additions consisted of either short poly(A) sequences or longer heteropolymeric ends with a mean size of about 40 nucleotides. Interestingly, multiple independent clones exhibited complex heteropolymeric ends of very similar but not identical nucleotide sequences. Similar polyadenylated and heteropolymeric ends were observed at 3′ ends of RNA isolated from wild-type and pnpA mutant strains. These data demonstrated that, unlike the case of some other bacterial species and chloroplasts, PNPase of Bacillus subtilis is not the major enzyme responsible for the addition of nucleotides to RNA 3′ ends.


2006 ◽  
Vol 80 (2) ◽  
pp. 769-784 ◽  
Author(s):  
Jennifer A. Schwartz ◽  
Elizabeth E. Brittle ◽  
Ashley E. Reynolds ◽  
Lynn W. Enquist ◽  
Saul J. Silverstein

ABSTRACT The pseudorabies virus (PRV) UL54 homologs are important multifunctional proteins with roles in shutoff of host protein synthesis, transactivation of virus and cellular genes, and regulation of splicing and translation. Here we describe the first genetic characterization of UL54. We constructed UL54 null mutations in a PRV bacterial artificial chromosome using sugar suicide and λRed allele exchange systems. Surprisingly, UL54 is dispensable for growth in tissue culture but exhibits a small-plaque phenotype that can be complemented in trans by both the herpes simplex virus type 1 ICP27 and varicella-zoster virus open reading frame 4 proteins. Deletion of UL54 in the virus vJSΔ54 had no effect on the ability of the virus to shut off host cell protein synthesis but did affect virus gene expression. The glycoprotein gC accumulated to lower levels in cells infected with vJSΔ54 compared to those infected with wild-type virus, while gK levels were undetectable. Other late gene products, gB, gE, and Us9, accumulated to higher levels than those seen in cells infected with wild-type virus in a multiplicity-dependent manner. DNA replication is also reduced in cells infected with vJSΔ54. UL54 appears to regulate UL53 and UL52 at the transcriptional level as their respective RNAs are decreased in cells infected with vJSΔ54. Interestingly, vJSΔ54 is highly attenuated in a mouse model of PRV infection. Animals infected with vJSΔ54 survive twice as long as animals infected with wild-type virus, and this results in delayed accumulation of virus-specific antigens in skin, dorsal root ganglia, and spinal cord tissues.


2007 ◽  
Vol 73 (16) ◽  
pp. 5354-5362 ◽  
Author(s):  
Andrzej T. Lulko ◽  
Jan-Willem Veening ◽  
Girbe Buist ◽  
Wiep Klaas Smits ◽  
Evert Jan Blom ◽  
...  

ABSTRACT Transcriptome analysis was used to investigate the global stress response of the gram-positive bacterium Bacillus subtilis caused by overproduction of the well-secreted AmyQ α-amylase from Bacillus amyloliquefaciens. Analyses of the control and overproducing strains were carried out at the end of exponential growth and in stationary phase, when protein secretion from B. subtilis is optimal. Among the genes that showed increased expression were htrA and htrB, which are part of the CssRS regulon, which responds to high-level protein secretion and heat stress. The analysis of the transcriptome profiles of a cssS mutant compared to the wild type, under identical secretion stress conditions, revealed several genes with altered transcription in a CssRS-dependent manner, for example, citM, ylxF, yloA, ykoJ, and several genes of the flgB operon. However, high-affinity CssR binding was observed only for htrA, htrB, and, possibly, citM. In addition, the DNA macroarray approach revealed that several genes of the sporulation pathway are downregulated by AmyQ overexpression and that a group of motility-specific (σD-dependent) transcripts were clearly upregulated. Subsequent flow-cytometric analyses demonstrate that, upon overproduction of AmyQ as well as of a nonsecretable variant of the α-amylase, the process of sporulation is severely inhibited. Similar experiments were performed to investigate the expression levels of the hag promoter, a well-established reporter for σD-dependent gene expression. This approach confirmed the observations based on our DNA macroarray analyses and led us to conclude that expression levels of several genes involved in motility are maintained at high levels under all conditions of α-amylase overproduction.


Author(s):  
Weifeng Luo ◽  
Setsuko Komatsu ◽  
Tatsuya Abe ◽  
Hideyuki Matsuura ◽  
Kosaku Talahashi

Wounding is a serious environmental stress in plants. Oxylipins such as jasmonic acid play an important role in defense against wounding. Mechanisms to adapt to wounding have been investigated in vascular plants; however, those mechanisms in nonvascular plants remain elusive. To examine the response to wounding in Physcomitrella patens, a model moss, a proteomic analysis of wounded P. patens was conducted. Proteomic analysis showed that wounding increased the abundance of proteins related to protein synthesis, amino acid metabolism, protein folding, photosystem, glycolysis, and energy synthesis. 12-Oxo-phytodienoic acid (OPDA) was induced by wounding and inhibited growth. Therefore, OPDA is considered a signaling molecule in this plant. Proteomic analysis of a P. patens mutant in which the PpAOS1 and PpAOS2 genes, which are involved in OPDA biosynthesis, are disrupted showed accumulation of proteins involved in protein synthesis in response to wounding in a similar way to the wild-type plant. In contrast, the fold-changes of the proteins in the wild-type plant were significantly different from those in the aos mutant. This study suggests that PpAOS gene expression enhances photosynthesis and effective energy utilization in response to wounding in P. patens.


EP Europace ◽  
2021 ◽  
Vol 23 (Supplement_3) ◽  
Author(s):  
I Hwang ◽  
J Park ◽  
O Kwon ◽  
B Lim ◽  
M Hong ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Public grant(s) – National budget only. Main funding source(s): This work was supported by a grant [HI19C0114] from the Ministry of Health and Welfare. Additionally, the work was funded by grants [NRF-2019R1C1C100907512], and [NRF-2020R1A2B01001695] from the Basic Science Research Program run by the National Research Foundation of Korea (NRF) under the Ministry of Science, ICT & Future Planning (MSIP). Background The efficacy of antiarrhythmic drugs (AAD) can vary in patients with atrial fibrillation (AF) and the PITX2 gene affects the responsiveness of AADs. We explored the virtual AAD (V-AAD) responses between wild-type and PITX2+/- deficient AF conditions by realistic in-silico AF modeling. Methods We tested the V-AADs in AF modeling integrated with patients’ 3D-computed tomography and 3D-electroanatomical mapping, acquired in 25 patients (68% male, 59.8 ± 9.8 years old, 32.0% paroxysmal type). The ion currents for the PITX2+/- deficiency and each AAD (amiodarone, sotalol, dronedarone, flecainide, and propafenone) were defined based on previous publications. Results We compared the wild-type and PITX2+/- deficiency in terms of the action potential duration (APD90), conduction velocity (CV), maximal slope of restitution (Smax), and wave-dynamic parameters, such as the dominant frequency (DF), phase singularities (PS), and AF termination rates according to the V-AADs. The PITX2+/- deficient model exhibited a shorter APD90 (p < 0.001), a lower Smax (p < 0.001), mean DF (p = 0.012), PS number (p < 0.001), and a longer AF cycle length (AFCL, p = 0.011). Five V-AADs changed the electrophysiology in a dose dependent manner. AAD-induced AFCL lengthening (p < 0.001) and reductions in the CV (p = 0.033), peak DF (p < 0.001) and PS number (p < 0.001) were more significant in PITX2+/- deficient than wild-type AF. PITX2+/- deficient AF was easier to terminate with class IC AADs than the wild-type AF (p = 0.018). Conclusions The computational modeling-guided AAD test was feasible for evaluating the efficacy of multiple AADs in patients with AF. AF wave-dynamics and electrophysiological characteristics are different among the PITX2 deficient and the wild-type genotype models. BaselineChanges after AADClass ICClass IIIWild-typePITX2+/-p-valueWild-typePITX2+/-p-valueWild-typePITX2+/-p-valueWild-typePITX2+/-p-valueAPD90, (ms)243.7 ± 33.8184.4 ± 15.5<0.00138.2 ± 37.343.4 ± 56.20.223275.9 ± 43.5219.0 ± 39.2<0.001284.9 ± 32.8233.8 ± 71.4<0.001CV, (m/s)0.78 ± 0.320.70 ± 0.210.347-0.15 ± 0.18-0.20 ± 0.260.0330.63 ± 0.320.53 ± 0.300.0270.60 ± 0.360.43 ± 0.33<0.001Mean Smax0.787 ± 0.280.531 ± 0.18<0.0010.005 ± 0.260.115 ± 0.24<0.0010.828 ± 0.310.694 ± 0.320.0030.768 ± 0.320.608 ± 0.27<0.001Mean AFCL, (ms)146.96 ± 24.61164.78 ± 22.730.01122.62 ± 24.5537.92 ± 32.72<0.001165.44 ± 36.96190.85 ± 35.61<0.001169.05 ± 25.26203.35 ± 34.78<0.001Peak DF, (Hz)10.68 ± 2.9711.82 ± 3.340.211-2.98 ± 4.94-5.46 ± 4.66<0.00110.01 ± 4.397.23 ± 4.20<0.0016.30 ± 4.325.80 ± 4.070.301Mean DF, (Hz)6.80 ± 0.886.22 ± 0.710.012-1.95 ± 2.44-2.20 ± 1.990.2065.75 ± 1.784.53 ± 2.00<0.0014.14 ± 2.393.69 ± 2.000.077PS Number, (N)101086 ± 9608814150 ± 24778<0.001-59322 ± 99288-7409 ± 27856<0.00150579 ± 6523611568 ± 21868<0.00132951 ± 558643524 ± 8302<0.001PS Life Span, (ms)109.36 ± 113.90102.24 ± 226.640.889-24.87 ± 72.06-41.38 ± 126.350.073103.36 ± 180.6868.05 ± 162.790.14871.91 ± 141.8655.99 ± 217.970.454Table. Effects of AADs in the Wild-type and PITX2+/- Deficiency groupAbstract Figure. Wild-type vs. PITX2+/- baseline model


Sign in / Sign up

Export Citation Format

Share Document