scholarly journals Bordetella AlcS Transporter Functions in Alcaligin Siderophore Export and Is Central to Inducer Sensing in Positive Regulation of Alcaligin System Gene Expression

2005 ◽  
Vol 187 (11) ◽  
pp. 3650-3661 ◽  
Author(s):  
Timothy J. Brickman ◽  
Sandra K. Armstrong

ABSTRACT Bordetella pertussis and Bordetella bronchiseptica, which are respiratory mucosal pathogens of mammals, produce and utilize the siderophore alcaligin to acquire iron in response to iron starvation. A predicted permease of the major facilitator superfamily class of membrane efflux pumps, AlcS (synonyms, OrfX and Bcr), was reported to be encoded within the alcaligin gene cluster. In this study, alcS null mutants were found to be defective in growth under iron starvation conditions, in iron source utilization, and in alcaligin export. trans complementation using cloned alcS genes of B. pertussis or B. bronchiseptica restored the wild-type phenotype to the alcS mutants. Although the levels of extracellular alcaligin measured in alcS strain culture fluids were severely reduced compared with the wild-type levels, alcS mutants had elevated levels of cell-associated alcaligin, implicating AlcS in alcaligin export. Interestingly, a ΔalcA mutation that eliminated alcaligin production suppressed the growth defects of alcS mutants. This suppression and the alcaligin production defect were reversed by trans complementation of the ΔalcA mutation in the double-mutant strain, confirming that the growth-defective phenotype of alcS mutants is associated with alcaligin production. In an alcA::mini-Tn5 lacZ1 operon fusion strain background, an alcS null mutation resulted in enhanced AlcR-dependent transcriptional responsiveness to alcaligin inducer; conversely, AlcS overproduction blunted the transcriptional response to alcaligin. These transcription studies indicate that the alcaligin exporter activity of AlcS is required to maintain appropriate intracellular alcaligin levels for normal inducer sensing and responsiveness necessary for positive regulation of alcaligin system gene expression.

2002 ◽  
Vol 277 (51) ◽  
pp. 49841-49849 ◽  
Author(s):  
Marc S. Pittman ◽  
Hazel Corker ◽  
Guanghui Wu ◽  
Marie B. Binet ◽  
Arthur J. G. Moir ◽  
...  

Assembly ofEscherichia colicytochromebdand periplasmic cytochromes requires the ATP-binding cassette transporter CydDC, whose substrate is unknown. Two-dimensional SDS-PAGE comparison of periplasm from wild-type andcydDmutant strains revealed that the latter was deficient in several periplasmic transport binding proteins, but no single major protein was missing in thecydDperiplasm. Instead, CydDC exports from cytoplasm to periplasm the amino acid cysteine, demonstrated using everted membrane vesicles that transported radiolabeled cysteine inward in an ATP-dependent, uncoupler-independent manner. New pleiotropiccydDphenotypes are reported, including sensitivity to benzylpenicillin and dithiothreitol, and loss of motility, consistent with periplasmic defects in disulfide bond formation. Exogenous cysteine reversed these phenotypes and affected levels of periplasmicc-type cytochromes incydDand wild-type strains but did not restore cytochromed. Consistent with CydDC being a cysteine exporter,cydDmutant growth was hypersensitive to high cysteine concentrations and accumulated higher cytoplasmic cysteine levels, as did a mutant defective inorf299, encoding a transporter of the major facilitator superfamily. AcydD orf299double mutant was extremely cysteine-sensitive and had higher cytoplasmic cysteine levels, whereas CydDC overexpression conferred resistance to high extracellular cysteine concentrations. We propose that CydDC exports cysteine, crucial for redox homeostasis in the periplasm.


2019 ◽  
Vol 317 (1) ◽  
pp. H168-H180 ◽  
Author(s):  
Ali M. Tabish ◽  
Mohammed Arif ◽  
Taejeong Song ◽  
Zaher Elbeck ◽  
Richard C. Becker ◽  
...  

In this study, we investigated the role of DNA methylation [5-methylcytosine (5mC)] and 5-hydroxymethylcytosine (5hmC), epigenetic modifications that regulate gene activity, in dilated cardiomyopathy (DCM). A MYBPC3 mutant mouse model of DCM was compared with wild type and used to profile genomic 5mC and 5hmC changes by Chip-seq, and gene expression levels were analyzed by RNA-seq. Both 5mC-altered genes (957) and 5hmC-altered genes (2,022) were identified in DCM hearts. Diverse gene ontology and KEGG pathways were enriched for DCM phenotypes, such as inflammation, tissue fibrosis, cell death, cardiac remodeling, cardiomyocyte growth, and differentiation, as well as sarcomere structure. Hierarchical clustering of mapped genes affected by 5mC and 5hmC clearly differentiated DCM from wild-type phenotype. Based on these data, we propose that genomewide 5mC and 5hmC contents may play a major role in DCM pathogenesis. NEW & NOTEWORTHY Our data demonstrate that development of dilated cardiomyopathy in mice is associated with significant epigenetic changes, specifically in intronic regions, which, when combined with gene expression profiling data, highlight key signaling pathways involved in pathological cardiac remodeling and heart contractile dysfunction.


1999 ◽  
Vol 12 (10) ◽  
pp. 901-910 ◽  
Author(s):  
Terrence M. Callahan ◽  
Mark S. Rose ◽  
Maura J. Meade ◽  
Marilyn Ehrenshaft ◽  
Robert G. Upchurch

Many species of the fungal genus Cercospora, including the soybean pathogen C. kikuchii, produce the phytotoxic polyketide cercosporin. Cercosporin production is induced by light. Previously, we identified several cDNA clones of mRNA transcripts that exhibited light-enhanced accumulation in C. kikuchii. Targeted disruption of the genomic copy of one of these, now designated CFP (cercosporin facilitator protein), results in a drastic reduction in cercosporin production, greatly reduced virulence of the fungus to soybean, and increased sensitivity to exogenous cercosporin. Sequence analysis of CFP reveals an 1,821-bp open reading frame encoding a 65.4-kDa protein similar to several members of the major facilitator superfamily (MFS) of integral membrane transporter proteins known to confer resistance to various antibiotics and toxins in fungi and bacteria. We propose that CFP encodes a cercosporin transporter that contributes resistance to cercosporin by actively exporting cercosporin, thus maintaining low cellular concentrations of the toxin.


2013 ◽  
Vol 81 (3) ◽  
pp. 945-955 ◽  
Author(s):  
Rachel L. Edwards ◽  
Andrew Bryan ◽  
Matthieu Jules ◽  
Kaoru Harada ◽  
Carmen Buchrieser ◽  
...  

ABSTRACTIn response to environmental fluctuations or stresses, bacteria can activate transcriptional and phenotypic programs to coordinate an adaptive response. The intracellular pathogenLegionella pneumophilaconverts from a noninfectious replicative form to an infectious transmissive form when the bacterium encounters alterations in either amino acid concentrations or fatty acid biosynthesis. Here, we report thatL. pneumophiladifferentiation is also triggered by nicotinic acid, a precursor of the central metabolite NAD+. In particular, when replicativeL. pneumophilaare treated with 5 mM nicotinic acid, the bacteria induce numerous transmissive-phase phenotypes, including motility, cytotoxicity toward macrophages, sodium sensitivity, and lysosome avoidance. Transcriptional profile analysis determined that nicotinic acid induces the expression of a panel of genes characteristic of transmissive-phaseL. pneumophila. Moreover, an additional 213 genes specific to nicotinic acid treatment were altered. Although nearly 25% of these genes lack an assigned function, the gene most highly induced by nicotinic acid treatment encodes a putative major facilitator superfamily transporter, Lpg0273. Indeed,lpg0273protectsL. pneumophilafrom toxic concentrations of nicotinic acid as judged by analyzing the growth of the corresponding mutant. The broad utility of the nicotinic acid pathway to couple central metabolism and cell fate is underscored by this small metabolite's modulation of gene expression by diverse microbes, includingCandida glabrata,Bordetella pertussis,Escherichia coli, andL. pneumophila.


2004 ◽  
Vol 36 (8) ◽  
pp. 519-528 ◽  
Author(s):  
Lei Qin ◽  
Heng-An Wang ◽  
Zhong-Qin Wu ◽  
Xiao-Feng Zhang ◽  
Mei-Lei Jin ◽  
...  

Abstract The hmr19 gene was cloned from Streptomyces hygroscopicus subsp. yingchengensis strain 10–22, a bacterium strain producing agricultural antibiotics. Sequence similarity comparison indicates that hmr19 gene may encode a predicted protein with 14 putative transmembrane α-helical spanners, belonging to the drug:H+ antiporter-2 family of the major facilitator superfamily. The expression of hmr19 in the mycelium of strain 10-22 was detected by Western blotting analysis. Gene replacement technology was employed to construct an hmr19 disruption mutant. The growth inhibition test against different antibiotics indicated that the mutant strain was 5–20 fold more susceptible to tetracycline, vancomycin and mitomycin C than the parental wild type strain. The mutant took up tetracycline much faster and accumulated more antibiotics than the wild type strain 10-22. While with the addition of an energy uncoupler, carbonyl cyanide m-chlorophenylhydrazone, the characteristics of the accumulation of [3H]tetracycline in these two strains were almost the same. It was thus concluded that hmr19 encoded a multidrug resistance efflux protein.


2012 ◽  
Vol 25 (11) ◽  
pp. 1408-1418 ◽  
Author(s):  
Jon Menke ◽  
Yanhong Dong ◽  
H. Corby Kistler

The gene Tri12 encodes a predicted major facilitator superfamily protein suggested to play a role in export of trichothecene mycotoxins produced by Fusarium spp. It is unclear, however, how the Tri12 protein (Tri12p) may influence trichothecene sensitivity and virulence of the wheat pathogen Fusarium graminearum. In this study, we establish a role for Tri12 in toxin accumulation and sensitivity as well as in pathogenicity toward wheat. Tri12 deletion mutants (tri12) are reduced in virulence and result in decreased trichothecene accumulation when inoculated on wheat compared with the wild-type strain or an ectopic mutant. Reduced radial growth of tri12 mutants on trichothecene biosynthesis induction medium was observed relative to the wild type and the ectopic strains. Diminished trichothecene accumulation was observed in liquid medium cultures inoculated with tri12 mutants. Wild-type fungal cells grown under conditions that induce trichothecene biosynthesis develop distinct subapical swelling and form large vacuoles. A strain expressing Tri12p linked to green fluorescent protein shows localization of the protein consistent with the plasma membrane. Our results indicate Tri12 plays a role in self-protection and influences toxin production and virulence of the fungus in planta.


2009 ◽  
Vol 134 (1) ◽  
pp. 88-96 ◽  
Author(s):  
Hongmei Ma ◽  
Margaret Pooler ◽  
Robert Griesbach

Anthocyanin biosynthesis requires the coordinated expression of Myc, Wd, Chs, Dfr, and Myb. Chs and Dfr are structural genes, while Myc, Myb, and Wd are regulatory genes. Reverse transcription polymerase chain reaction was used to measure the expression of these genes in Phalaenopsis amabilis and Phalaenopsis schilleriana. P. amabilis expresses an albescent phenotype with petals and sepals that are anthocyanin free, while P. schilleriana has a wild-type phenotype with anthocyanin-containing petals and sepals. As expected, the petals and sepals of P. schilleriana expressed high levels of Chs and Dfr. The petals and sepals of P. amabilis expressed high levels of Chs and very low levels of Dfr. In P. amabilis and P. schilleriana, anthocyanin-specific Myc and Wd were expressed; however, Myb specific for anthocyanin biosynthesis were undetectable in P. amabilis. This suggests that the absence of Myb expression was responsible for the lack of dihydroflavonol 4-reductase and results in the absence of anthocyanin pigmentation in P. amabilis petals and sepals. This was confirmed by particle bombardment of P. amabilis petals with functional Mybs isolated from P. schilleriana. Comparisons of anthocyanin-related Myb gene expression between P. schilleriana and P. amabilis are between genetically different species. Phalaenopsis ‘Everspring Fairy’ expresses a harlequin phenotype with white petals and sepals containing large anthocyanin sectors. Harlequin flowers are ideal to evaluate anthocyanin-related Myb gene expression within genetically identical but differently pigmented tissue. High levels of anthocyanin-specific Myb and Dfr transcripts were present in the purple, but not in the white, sectors of Phalaenopsis ‘Everspring Fairy’ petals and sepals. There was no differential expression of Chs, Wd, and Myc between the purple and white sectors. These results are in agreement with the results from P. amabilis and P. schilleriana.


1992 ◽  
Vol 6 (7) ◽  
pp. 1143-1152 ◽  
Author(s):  
G P Zambetti ◽  
J Bargonetti ◽  
K Walker ◽  
C Prives ◽  
A J Levine

2016 ◽  
Vol 12 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Valentina Tortosa ◽  
Maria Carmela Bonaccorsi di Patti ◽  
Giovanni Musci ◽  
Fabio Polticelli

AbstractFerroportin, a membrane protein belonging to the major facilitator superfamily of transporters, is the only vertebrate iron exporter known so far. Several ferroportin mutations lead to the so-called ferroportin disease or type 4 hemochromatosis, characterized by two distinct iron accumulation phenotypes depending on whether the mutation affects the activity of the protein or its degradation pathway. Through extensive molecular modeling analyses using the structure of all known major facilitator superfamily members as templates, multiple structural models of ferroportin in the three mechanistically relevant conformations (inward open, occluded, and outward open) have been obtained. The best models, selected on the ground of experimental data available on wild-type and mutant ferroportion, provide for the first time a prediction at the atomic level of the dynamics of the transporter. Based on these results, a possible mechanism for iron export is proposed.


Sign in / Sign up

Export Citation Format

Share Document