scholarly journals Activities of the Serratia marcescens Heme Receptor HasR and Isolated Plug and β-Barrel Domains: the β-Barrel Forms a Heme-Specific Channel

2005 ◽  
Vol 187 (13) ◽  
pp. 4637-4645 ◽  
Author(s):  
Sylvie Létoffé ◽  
Karine Wecker ◽  
Muriel Delepierre ◽  
Philippe Delepelaire ◽  
Cécile Wandersman

ABSTRACT The Serratia marcescens hemophore-specific outer membrane receptor HasR is a member of the TonB-dependent family of autoregulated receptors. It can transport either heme itself or heme bound to the hemophore HasA. On the basis of sequence and functional similarities with other TonB-dependent outer membrane receptors whose three-dimensional structures have been determined, a HasR structure model was proposed. The mature HasR protein comprises a 99-residue amino-terminal extension necessary for hasR transcription, followed by a plug domain of 139 amino acids and a β-barrel domain inserted in the outer membrane, the lumen of which is closed by the plug. This model was used to generate hasR deletions encoding HasR proteins with the native signal peptides but lacking either the N-terminal regulatory extension or encoding the plug or the β-barrel alone. The protein lacking the N-terminal extension, HasR Δ11-91, was incorporated in the outer membrane and was fully functional for active uptake of free and hemophore-bound heme. The HasR β-barrel, Δ11-192, was also incorporated in the outer membrane and bound the hemophore but expressed no active heme transport properties. The HasR plug remained in the periplasm. Coexpression of the plug and the β-barrel allowed partial plug insertion in the outer membrane, demonstrating that these two HasR domains interact in vivo. The β-barrel and the plug also interact in vitro. Nevertheless, the two domains did not complement each other to reconstitute an active TonB-dependent receptor for free or hemophore-bound heme uptake. Production of the β-barrel alone selectively increased passive diffusion of heme but not of other exogenous compounds. A mutation at histidine 603, which is required for heme uptake through the wild-type receptor, abolished heme diffusion, showing that HasR Δ11-192 forms a specific heme channel.

2007 ◽  
Vol 189 (14) ◽  
pp. 5379-5382 ◽  
Author(s):  
Clément Barjon ◽  
Karine Wecker ◽  
Nadia Izadi-Pruneyre ◽  
Philippe Delepelaire

ABSTRACT On the basis of the three-dimensional model of the heme/hemophore TonB-dependent outer membrane receptor HasR, mutants with six-residue deletions in the 11 putative extracellular loops were generated. Although all mutants continued to be active TonB-dependent heme transporters, mutations in three loops abolished hemophore HasA binding both in vivo and in vitro.


2011 ◽  
Vol 89 (2) ◽  
pp. 87-97 ◽  
Author(s):  
Karla D. Krewulak ◽  
Hans J. Vogel

Bacteria are able to survive in low-iron environments by sequestering this metal ion from iron-containing proteins and other biomolecules such as transferrin, lactoferrin, heme, hemoglobin, or other heme-containing proteins. In addition, many bacteria secrete specific low molecular weight iron chelators termed siderophores. These iron sources are transported into the Gram-negative bacterial cell through an outer membrane receptor, a periplasmic binding protein (PBP), and an inner membrane ATP-binding cassette (ABC) transporter. In different strains the outer membrane receptors can bind and transport ferric siderophores, heme, or Fe3+ as well as vitamin B12, nickel complexes, and carbohydrates. The energy that is required for the active transport of these substrates through the outer membrane receptor is provided by the TonB/ExbB/ExbD complex, which is located in the cytoplasmic membrane. In this minireview, we will briefly examine the three-dimensional structure of TonB and the current models for the mechanism of TonB-dependent energy transduction. Additionally, the role of TonB in colicin transport will be discussed.


2008 ◽  
Vol 190 (6) ◽  
pp. 1866-1870 ◽  
Author(s):  
Sylvie Létoffé ◽  
Philippe Delepelaire ◽  
Cécile Wandersman

ABSTRACT Serratia marcescens hemTUV genes encoding a potential heme permease were cloned in Escherichia coli recombinant mutant FB827 dppF::Km(pAM 238-hasR). This strain, which expresses HasR, a foreign heme outer membrane receptor, is potentially capable of using heme as an iron source. However, this process is invalidated due to a dppF::Km mutation which inactivates the Dpp heme/peptide permease responsible for heme, dipeptide, and δ-aminolevulinic (ALA) transport through the E. coli inner membrane. We show here that hemTUV genes complement the Dpp permease for heme utilization as an iron source and thus are functional in E. coli. However, hemTUV genes do not complement the Dpp permease for ALA uptake, indicating that the HemTUV permease does not transport ALA. Peptides do not inhibit heme uptake in vivo, indicating that, unlike Dpp permease, HemTUV permease does not transport peptides. HemT, the periplasmic binding protein, binds heme. Heme binding is saturable and not inhibited by peptides that inhibit heme uptake by the Dpp system. Thus, the S. marcescens HemTUV permease and, most likely, HemTUV orthologs present in many gram-negative pathogens form a class of heme-specific permeases different from the Dpp peptide/heme permease characterized in E. coli.


2019 ◽  
Vol 69 (Supplement_7) ◽  
pp. S529-S537 ◽  
Author(s):  
Malcom G P Page

Abstract Iron is an essential nutrient for bacterial growth, replication, and metabolism. Humans store iron bound to various proteins such as hemoglobin, haptoglobin, transferrin, ferritin, and lactoferrin, limiting the availability of free iron for pathogenic bacteria. However, bacteria have developed various mechanisms to sequester or scavenge iron from the host environment. Iron can be taken up by means of active transport systems that consist of bacterial small molecule siderophores, outer membrane siderophore receptors, the TonB-ExbBD energy-transducing proteins coupling the outer and the inner membranes, and inner membrane transporters. Some bacteria also express outer membrane receptors for iron-binding proteins of the host and extract iron directly from these for uptake. Ultimately, iron is acquired and transported into the bacterial cytoplasm. The siderophores are small molecules produced and released by nearly all bacterial species and are classified according to the chemical nature of their iron-chelating group (ie, catechol, hydroxamate, α-hydroxyl-carboxylate, or mixed types). Siderophore-conjugated antibiotics that exploit such iron-transport systems are under development for the treatment of infections caused by gram-negative bacteria. Despite demonstrating high in vitro potency against pathogenic multidrug-resistant bacteria, further development of several candidates had stopped due to apparent adaptive resistance during exposure, lack of consistent in vivo efficacy, or emergence of side effects in the host. However, cefiderocol, with an optimized structure, has advanced and has been investigated in phase 1 to 3 clinical trials. This article discusses the mechanisms implicated in iron uptake and the challenges associated with the design and utilization of siderophore-mimicking antibiotics.


2002 ◽  
Vol 184 (6) ◽  
pp. 1640-1648 ◽  
Author(s):  
Penelope I. Higgs ◽  
Tracy E. Letain ◽  
Kelley K. Merriam ◽  
Neal S. Burke ◽  
HaJeung Park ◽  
...  

ABSTRACT The Escherichia coli TonB protein serves to couple the cytoplasmic membrane proton motive force to active transport of iron-siderophore complexes and vitamin B12 across the outer membrane. Consistent with this role, TonB has been demonstrated to participate in strong interactions with both the cytoplasmic and outer membranes. The cytoplasmic membrane determinants for that interaction have been previously characterized in some detail. Here we begin to examine the nature of TonB interactions with the outer membrane. Although the presence of the siderophore enterochelin (also known as enterobactin) greatly enhanced detectable cross-linking between TonB and the outer membrane receptor, FepA, the absence of enterochelin did not prevent the localization of TonB to the outer membrane. Furthermore, the absence of FepA or indeed of all the iron-responsive outer membrane receptors did not alter this association of TonB with the outer membrane. This suggested that TonB interactions with the outer membrane were not limited to the TonB-dependent outer membrane receptors. Hydrolysis of the murein layer with lysozyme did not alter the distribution of TonB, suggesting that peptidoglycan was not responsible for the outer membrane association of TonB. Conversely, the interaction of TonB with the outer membrane was disrupted by the addition of 4 M NaCl, suggesting that these interactions were proteinaceous. Subsequently, two additional contacts of TonB with the outer membrane proteins Lpp and, putatively, OmpA were identified by in vivo cross-linking. These contacts corresponded to the 43-kDa and part of the 77-kDa TonB-specific complexes described previously. Surprisingly, mutations in these proteins individually did not appear to affect TonB phenotypes. These results suggest that there may be multiple redundant sites where TonB can interact with the outer membrane prior to transducing energy to the outer membrane receptors.


2010 ◽  
Vol 192 (22) ◽  
pp. 5934-5942 ◽  
Author(s):  
Aurélie Barnéoud-Arnoulet ◽  
Marthe Gavioli ◽  
Roland Lloubès ◽  
Eric Cascales

ABSTRACT Colicins are bacterial antibiotic toxins produced by Escherichia coli cells and are active against E. coli and closely related strains. To penetrate the target cell, colicins bind to an outer membrane receptor at the cell surface and then translocate their N-terminal domain through the outer membrane and the periplasm. Once fully translocated, the N-terminal domain triggers entry of the catalytic C-terminal domain by an unknown process. Colicin K uses the Tsx nucleoside-specific receptor for binding at the cell surface, the OmpA protein for translocation through the outer membrane, and the TolABQR proteins for the transit through the periplasm. Here, we initiated studies to understand how the colicin K N-terminal domain (KT) interacts with the components of its transit machine in the periplasm. We first produced KT fused to a signal sequence for periplasm targeting. Upon production of KT in wild-type strains, cells became partly resistant to Tol-dependent colicins and sensitive to detergent, released periplasmic proteins, and outer membrane vesicles, suggesting that KT interacts with and titrates components of its import machine. Using a combination of in vivo coimmunoprecipitations and in vitro pulldown experiments, we demonstrated that KT interacts with the TolA, TolB, and TolR proteins. For the first time, we also identified an interaction between the TolQ protein and a colicin translocation domain.


2004 ◽  
Vol 186 (13) ◽  
pp. 4067-4074 ◽  
Author(s):  
Sylvie Létoffé ◽  
Philippe Delepelaire ◽  
Cécile Wandersman

ABSTRACT Many gram-negative bacteria have specific outer membrane receptors for free heme, hemoproteins, and hemophores. Heme is a major iron source and is taken up intact, whereas hemoproteins and hemophores are not transported: the iron-containing molecule has to be stripped off at the cell surface, with only the heme moiety being taken up. The Serratia marcescens hemophore-specific outer membrane receptor HasR can transport either heme itself or heme bound to the hemophore HasA. This second mechanism is much more efficient and requires a higher TonB-ExbB-ExbD (TonB complex) concentration than does free or hemoglobin-bound heme uptake. This requirement for more of the TonB complex is associated with a higher energy requirement. Indeed, the sensitivity of heme-hemophore uptake to the protonophore carbonyl cyanide m-chlorophenyl hydrazone is higher than that of heme uptake from hemoglobin. We show that a higher TonB complex concentration is required for hemophore dissociation from the receptor. This dissociation is concomitant with heme uptake. We propose that increasing the TonB complex concentration drives more energy to the outer membrane receptor and speeds up the release of empty hemophores, which, if they remained on receptors, would inhibit heme transport.


2008 ◽  
Vol 190 (20) ◽  
pp. 6548-6558 ◽  
Author(s):  
Jason Greenwald ◽  
Gabrielle Zeder-Lutz ◽  
Agnès Hagege ◽  
Hervé Celia ◽  
Franc Pattus

ABSTRACT To acquire iron, Pseudomonas aeruginosa secretes the fluorescent siderophore pyoverdine (Pvd), which chelates iron and shuttles it into the cells via the specific outer membrane transporter FpvA. We studied the role of iron and other metals in the binding and transport of Pvd by FpvA and conclude that there is no significant affinity between FpvA and metal-free Pvd. We found that the fluorescent in vivo complex of iron-free FpvA-Pvd is in fact a complex with aluminum (FpvA-Pvd-Al) formed from trace aluminum in the growth medium. When Pseudomonas aeruginosa was cultured in a medium that had been treated with a metal affinity resin, the in vivo formation of the FpvA-Pvd complex and the recycling of Pvd on FpvA were nearly abolished. The accumulation of Pvd in the periplasm of Pseudomonas aeruginosa was also reduced in the treated growth medium, while the addition of 1 μM AlCl3 to the treated medium restored the effects of trace metals observed in standard growth medium. Using fluorescent resonance energy transfer and surface plasmon resonance techniques, the in vitro interactions between Pvd and detergent-solubilized FpvA were also shown to be metal dependent. We demonstrated that FpvA binds Pvd-Fe but not Pvd and that Pvd did not compete with Pvd-Fe for FpvA binding. In light of our finding that the Pvd-Al complex is transported across the outer membrane of Pseudomonas aeruginosa, a model for siderophore recognition based on a metal-induced conformation followed by redox selectivity for iron is discussed.


2006 ◽  
Vol 188 (16) ◽  
pp. 5752-5761 ◽  
Author(s):  
Hendrik Adams ◽  
Gabrielle Zeder-Lutz ◽  
Isabelle Schalk ◽  
Franc Pattus ◽  
Hervé Celia

ABSTRACT Pyoverdine-mediated iron uptake by the FpvA receptor in the outer membrane of Pseudomonas aeruginosa is dependent on the inner membrane protein TonB1. This energy transducer couples the proton-electrochemical potential of the inner membrane to the transport event. To shed more light upon this process, a recombinant TonB1 protein lacking the N-terminal inner membrane anchor (TonBpp) was constructed. This protein was, after expression in Escherichia coli, purified from the soluble fraction of lysed cells by means of an N-terminal hexahistidine or glutathione S-transferase (GST) tag. Purified GST-TonBpp was able to capture detergent-solubilized FpvA, regardless of the presence of pyoverdine or pyoverdine-Fe. Targeting of the TonB1 fragment to the periplasm of P. aeruginosa inhibited the transport of ferric pyoverdine by FpvA in vivo, indicating an interference with endogenous TonB1, presumably caused by competition for binding sites at the transporter or by formation of nonfunctional TonB heterodimers. Surface plasmon resonance experiments demonstrated that the FpvA-TonBpp interactions have apparent affinities in the micromolar range. The binding of pyoverdine or ferric pyoverdine to FpvA did not modulate this affinity. Apparently, the presence of either iron or pyoverdine is not essential for the formation of the FpvA-TonB complex in vitro.


Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


Sign in / Sign up

Export Citation Format

Share Document