scholarly journals Experimental Identification and Quantification of Glucose Metabolism in Seven Bacterial Species

2005 ◽  
Vol 187 (5) ◽  
pp. 1581-1590 ◽  
Author(s):  
Tobias Fuhrer ◽  
Eliane Fischer ◽  
Uwe Sauer

ABSTRACT The structurally conserved and ubiquitous pathways of central carbon metabolism provide building blocks and cofactors for the biosynthesis of cellular macromolecules. The relative uses of pathways and reactions, however, vary widely among species and depend upon conditions, and some are not used at all. Here we identify the network topology of glucose metabolism and its in vivo operation by quantification of intracellular carbon fluxes from 13C tracer experiments. Specifically, we investigated Agrobacterium tumefaciens, two pseudomonads, Sinorhizobium meliloti, Rhodobacter sphaeroides, Zymomonas mobilis, and Paracoccus versutus, which grow on glucose as the sole carbon source, represent fundamentally different metabolic lifestyles (aerobic, anaerobic, photoheterotrophic, and chemoheterotrophic), and are phylogenetically distinct (firmicutes, γ-proteobacteria, and α-proteobacteria). Compared to those of the model bacteria Escherichia coli and Bacillus subtilis, metabolisms of the investigated species differed significantly in several respects: (i) the Entner-Doudoroff pathway was the almost exclusive catabolic route; (ii) the pentose phosphate pathway exhibited exclusively biosynthetic functions, in many cases also requiring flux through the nonoxidative branch; (iii) all aerobes exhibited fully respiratory metabolism without significant overflow metabolism; and (iv) all aerobes used the pyruvate bypass of the malate dehydrogenase reaction to a significant extent. Exclusively, Pseudomonas fluorescens converted most glucose extracellularly to gluconate and 2-ketogluconate. Overall, the results suggest that metabolic data from model species with extensive industrial and laboratory history are not representative of microbial metabolism, at least not quantitatively.

Author(s):  
Shuohui Dong ◽  
Shuo Liang ◽  
Zhiqiang Cheng ◽  
Xiang Zhang ◽  
Li Luo ◽  
...  

Abstract Background Acquired resistance of 5-fluorouracil (5-FU) remains a clinical challenge in colorectal cancer (CRC), and efforts to develop targeted agents to reduce resistance have not yielded success. Metabolic reprogramming is a key cancer hallmark and confers several tumor phenotypes including chemoresistance. Glucose metabolic reprogramming events of 5-FU resistance in CRC has not been evaluated, and whether abnormal glucose metabolism could impart 5-FU resistance in CRC is also poorly defined. Methods Three separate acquired 5-FU resistance CRC cell line models were generated, and glucose metabolism was assessed by measuring glucose and lactate utilization, RNA and protein expressions of glucose metabolism-related enzymes and changes of intermediate metabolites of glucose metabolite pool. The protein levels of hypoxia inducible factor 1α (HIF-1α) in primary tumors and circulating tumor cells of CRC patients were detected by immunohistochemistry and immunofluorescence. Stable HIF1A knockdown in cell models was established with a lentiviral system. The influence of both HIF1A gene knockdown and pharmacological inhibition on 5-FU resistance in CRC was evaluated in cell models in vivo and in vitro. Results The abnormality of glucose metabolism in 5-FU-resistant CRC were described in detail. The enhanced glycolysis and pentose phosphate pathway in CRC were associated with increased HIF-1α expression. HIF-1α-induced glucose metabolic reprogramming imparted 5-FU resistance in CRC. HIF-1α showed enhanced expression in 5-FU-resistant CRC cell lines and clinical specimens, and increased HIF-1α levels were associated with failure of fluorouracil analog-based chemotherapy in CRC patients and poor survival. Upregulation of HIF-1α in 5-FU-resistant CRC occurred through non-oxygen-dependent mechanisms of reactive oxygen species-mediated activation of PI3K/Akt signaling and aberrant activation of β-catenin in the nucleus. Both HIF-1α gene knock-down and pharmacological inhibition restored the sensitivity of CRC to 5-FU. Conclusions HIF-1α is a potential biomarker for 5-FU-resistant CRC, and targeting HIF-1a in combination with 5-FU may represent an effective therapeutic strategy in 5-FU-resistant CRC.


2019 ◽  
Vol 37 (4_suppl) ◽  
pp. 561-561
Author(s):  
Qingguo Li ◽  
Shaobo Mo ◽  
Xinxiang Li ◽  
SanJun Cai

561 Background: The CDX2 expression is significantly decreased in colorectal cancer (CRC) tissues and lost its expression is associated with poor survival. However, the underline of this activity of CDX2 is not well understood. In the present study, we sought to determine the role of CDX2 in tumorigenesis, and elucidate the possible mechanism. Methods: The effect of CDX2 expression on proliferation of and glycolysis in CRC cells was assessed by altering its expression in vitro and in vivo. Mechanistic investigation was carried out using cell and molecular biological approaches. Human CRC tissues were also used to verify the relationship between CDX2 expression and glycolysis. Results: Forced CDX2 expression in CRC cells inhibited their proliferation and colony formation. In contrast, silencing CDX2 expression had the opposite effect, suggesting that CDX2 is a negative regulator of oncogenesis in CRC. Mechanistically, CDX2 negatively regulated the aerobic glycolysis, a process that contributed to tumor progression by providing energy source and building blocks for macromolecule synthesis. Consistent with this observation, an in vivo subcutaneous xenograft mouse model and in a series of patients (n=71) received PET/CT initial after diagnosed also confirmed the hypothesis that CDX2 is a negative regulator of glycolysis as reflected by the decreased 18FDG uptake in PET/CT system. Furthermore, increased expression of CDX2 downregulated that of a glycolytic enzyme, phosphoglycerate mutase 1(PGAM1) in vitro. Moreover, there was a negative relationship between CDX2 and PGAM1 expression in human CRC tissues as determined by both RT-PCR and Immunohistochemistry. Luciferase analysis further indicated that CDX2 could inhibited PGAM1 promoter activity at dose dependent. Conclusions: The CDX2 inhibits cell proliferation, reprograms glucose metabolism by targeting PGAM1 expression in CRC, and the CDX2/PGAM1 axis constitutes potential prognostic predictors and therapeutic targets for CRC.


1983 ◽  
Vol 49 (1) ◽  
pp. 159-165 ◽  
Author(s):  
N. Chaiyabutr ◽  
Anne Faulkner ◽  
M. Peaker

1. Glucose turnover in fed and 48 h-starved lactating goats was determined during a glucose load of 500 μmol/min using a continuous infusion of [U-14C]- and [3-3H]glucose.2. Endogenous rates of irreversible glucose turnover (i.e. total rates of irreversible glucose turnover minus the rate of exogenous glucose supply) were depressed during glucose loading by 14 and 62% in the fed and starved animals respectively.3. Plasma glucose concentrations increased significantly by 57 and 88% in the fed and starved goats respectively. Plasma insulin concentrations increased by 108 and 128% in the fed and starved animals respectively.4. Milk yields increased significantly (41%) in the starved animals during glucose loading, but were unaffected in fed animals.5. In both the fed and 48 h-starved goats, mammary glucose metabolism via glycolysis and the pentose phosphate pathway appeared to be stimulated by glucose loading.


2005 ◽  
Vol 17 (2) ◽  
pp. 218 ◽  
Author(s):  
J. De La Torre-Sanchez ◽  
D. Gardner ◽  
K. Preis ◽  
G. Seidel Jr

Our objective was to improve normality of embryos produced in vitro with regulators of carbohydrate metabolism at doses optimized in earlier experiments. Eight- to 16-cell embryos were produced in vitro in the G1/G2 system (chemically defined sequential medium with recombinant human serum albumin), and then cultured 3 days in G2 containing metabolic regulators as follows: phenazine ethosulfate (PES), 0.3 μM; NaN3, 27 μM; 2,4-dinitrophenol (DNP), 30 μM; and control. The following responses were analyzed by ANOVA in 2 to 4 replicates of 8–12 embryos each: glucose uptake and metabolism (uptake measured by microfluorometry of medium after incubating an embryo 3 h; metabolism measured as 3H2O released after incubating an embryo 3 h in medium containing 5-3H glucose), % of glucose metabolized via the pentose phosphate pathway (PPP rate), lactate production, glycolysis (% of lactate produced from glucose taken up on a molar basis), lipid accumulation (number of >2 μM Sudan Black B positive granules/103 μm2), % live Day 14 embryos recovered from embryos transferred to recipients at Day 7, and average surface area of embryos collected. In vivo-derived embryos were included as a second control for lipid evaluation. PES-treated embryos had higher glucose metabolism (P < 0.05) and lower glucose uptake (P < 0.01) than embryos in NaN3 and tended to have a higher PPP rate (P < 0.11) than controls; however, glycolysis was higher for PES than other treatments (P < 0.01) (Table 1). Lipid accumulation of embryos from PES was markedly lower than any other in vitro treatments (P < 0.01), but higher than in vivo embryos (3.31 ± 2.78 lipid granules) (P < 0.01). NaN3- and DNP-treated embryos both accumulated lipid similar to in vitro controls. No treatment differences were found in developmental competence when Day 7 embryos were transferred to recipients and recovered 1 week later (43 to 54% live embryos recovered), nor were there any significant differences (P > 0.1) in surface area. Embryos exposed to PES at the compaction and post-compaction stages accumulated much less lipid than controls or embryos exposed to other metabolic regulators, making this a very promising treatment. PES oxidizes NADPH; the molecular mechanism of PES appears to involve increased flux of glucose through the PPP while decreasing availability of NADPH for fatty acid synthesis. Table 1. Response of embryos to metabolic regulators


1962 ◽  
Vol 40 (2) ◽  
pp. 261-270 ◽  
Author(s):  
P. W. Hochachka ◽  
F. R. Hayes

In warm (15 °C) acclimated Salvelinus fontinalis, (i) the respiration of epaxial muscle homogenates was almost completely inhibited by iodoacetate; (ii) C14O2 was incorporated primarily into positions 3, 4 of liver glycogen, and (iii) in vivo and in vitro glucose-1-C14 metabolism was similar to that of glucose-6-C14. The results suggest a predominant participation of the Embden–Meyerhof path.In cold-acclimated (4 °C) trout, (i) the respiration of muscle homogenates was higher and less sensitive to iodoacetate; (ii) less of the C14O2 incorporated into liver glycogen appeared in carbon atoms 3 and 4; (iii) there was a sharp discrimination between the metabolism of C1- and C6- labelled glucose; and (iv) acetate-1-C14 oxidation was lower, but incorporation into fat was higher than in the warm-adapted fish. An activation of the pentose phosphate cycle in conjunction with a higher rate of fat synthesis during cold compensation could account for all of the foregoing data.


Reproduction ◽  
2010 ◽  
Vol 139 (4) ◽  
pp. 685-695 ◽  
Author(s):  
Melanie L Sutton-McDowall ◽  
Robert B Gilchrist ◽  
Jeremy G Thompson

The environment that the cumulus oocyte complex (COC) is exposed to during eitherin vivoorin vitromaturation (IVM) can have profound effects on the success of fertilisation and subsequent embryo development. Glucose is a pivotal metabolite for the COC and is metabolised by glycolysis, the pentose phosphate pathway (PPP), the hexosamine biosynthesis pathway (HBP) and the polyol pathway. Over the course of oocyte maturation, a large proportion of total glucose is metabolised via the glycolytic pathway to provide substrates such as pyruvate for energy production. Glucose is also the substrate for many cellular functions during oocyte maturation, including regulation of nuclear maturation and redox state via the PPP and for the synthesis of substrates of extracellular matrices (cumulus expansion) andO-linked glycosylation (cell signalling) via the HBP. However, the oocyte is susceptible to glucose concentration-dependent perturbations in nuclear and cytoplasmic maturation, leading to poor embryonic development post-fertilisation. For example, glucose concentrations either too high or too low result in precocious resumption of nuclear maturation. This review will discuss the relevant pathways of glucose metabolism by COCs duringin vivomaturation and IVM, including the relative contribution of the somatic and gamete compartments of the COC to glucose metabolism. The consequences of exposing COCs to abnormal glucose concentrations will also be examined, either during IVM or by altered maternal environments, such as during hyperglycaemia induced by diabetes and obesity.


2017 ◽  
Vol 200 (2) ◽  
Author(s):  
Justin P. Hawkins ◽  
Patricia A. Ordonez ◽  
Ivan J. Oresnik

ABSTRACTSinorhizobium melilotiis a Gram-negative alphaproteobacterium that can enter into a symbiotic relationship withMedicago sativaandMedicago truncatula. Previous work determined that a mutation in thetkt2gene, which encodes a putative transketolase, could prevent medium acidification associated with a mutant strain unable to metabolize galactose. Since the pentose phosphate pathway inS. melilotiis not well studied, strains carrying mutations in eithertkt2andtal, which encodes a putative transaldolase, were characterized. Carbon metabolism phenotypes revealed that both mutants were impaired in growth on erythritol and ribose. This phenotype was more pronounced for thetkt2mutant strain, which also displayed auxotrophy for aromatic amino acids. Changes in pentose phosphate pathway metabolite concentrations were also consistent with a mutation in eithertkt2ortal. The concentrations of metabolites in central carbon metabolism were also found to shift dramatically in strains carrying atkt2mutation. While the concentrations of proteins involved in central carbon metabolism did not change significantly under any conditions, the levels of those associated with iron acquisition increased in the wild-type strain with erythritol induction. These proteins were not detected in either mutant, resulting in less observable rhizobactin production in thetkt2mutant. While both mutants were impaired in succinoglycan synthesis, only thetkt2mutant strain was unable to establish symbiosis with alfalfa. These results suggest thattkt2andtalplay central roles in regulating the carbon flow necessary for carbon metabolism and the establishment of symbiosis.IMPORTANCESinorhizobium melilotiis a model organism for the study of plant-microbe interactions and metabolism, especially because it effects nitrogen fixation. The ability to derive the energy necessary for nitrogen fixation is dependent on an organism's ability to metabolize carbon efficiently. The pentose phosphate pathway is central in the interconversion of hexoses and pentoses. This study characterizes the key enzymes of the nonoxidative branch of the pentose phosphate pathway by using defined genetic mutations and shows the effects the mutations have on the metabolite profile and on physiological processes such as the biosynthesis of exopolysaccharide, as well as the ability to regulate iron acquisition.


2020 ◽  
Vol 13 (1) ◽  
pp. 293-314 ◽  
Author(s):  
Zhuo Zhang ◽  
Xiawei Cheng ◽  
Yuzheng Zhao ◽  
Yi Yang

As the core component of cell metabolism, central carbon metabolism, consisting of glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle converts nutrients into metabolic precursors for biomass and energy to sustain the life of virtually all extant species. The metabolite levels or distributions in central carbon metabolism often change dynamically with cell fates, development, and disease progression. However, traditional biochemical methods require cell lysis, making it challenging to obtain spatiotemporal information about metabolites in living cells and in vivo. Genetically encoded fluorescent sensors allow the rapid, sensitive, specific, and real-time readout of metabolite dynamics in living organisms, thereby offering the potential to fill the gap in current techniques. In this review, we introduce recent progress made in the development of genetically encoded fluorescent sensors for central carbon metabolism and discuss their advantages, disadvantages, and applications. Moreover, several future directions of metabolite sensors are also proposed.


Author(s):  
H. Engelhardt ◽  
R. Guckenberger ◽  
W. Baumeister

Bacterial photosynthetic membranes contain, apart from lipids and electron transport components, reaction centre (RC) and light harvesting (LH) polypeptides as the main components. The RC-LH complexes in Rhodopseudomonas viridis membranes are known since quite seme time to form a hexagonal lattice structure in vivo; hence this membrane attracted the particular attention of electron microscopists. Contrary to previous claims in the literature we found, however, that 2-D periodically organized photosynthetic membranes are not a unique feature of Rhodopseudomonas viridis. At least five bacterial species, all bacteriophyll b - containing, possess membranes with the RC-LH complexes regularly arrayed. All these membranes appear to have a similar lattice structure and fine-morphology. The lattice spacings of the Ectothiorhodospira haloohloris, Ectothiorhodospira abdelmalekii and Rhodopseudomonas viridis membranes are close to 13 nm, those of Thiocapsa pfennigii and Rhodopseudomonas sulfoviridis are slightly smaller (∼12.5 nm).


2019 ◽  
Vol 2 (4) ◽  
pp. 83-98 ◽  
Author(s):  
André De Lima Mota ◽  
Bruna Vitorasso Jardim-Perassi ◽  
Tialfi Bergamin De Castro ◽  
Jucimara Colombo ◽  
Nathália Martins Sonehara ◽  
...  

Breast cancer is the most common cancer among women and has a high mortality rate. Adverse conditions in the tumor microenvironment, such as hypoxia and acidosis, may exert selective pressure on the tumor, selecting subpopulations of tumor cells with advantages for survival in this environment. In this context, therapeutic agents that can modify these conditions, and consequently the intratumoral heterogeneity need to be explored. Melatonin, in addition to its physiological effects, exhibits important anti-tumor actions which may associate with modification of hypoxia and Warburg effect. In this study, we have evaluated the action of melatonin on tumor growth and tumor metabolism by different markers of hypoxia and glucose metabolism (HIF-1α, glucose transporters GLUT1 and GLUT3 and carbonic anhydrases CA-IX and CA-XII) in triple negative breast cancer model. In an in vitro study, gene and protein expressions of these markers were evaluated by quantitative real-time PCR and immunocytochemistry, respectively. The effects of melatonin were also tested in a MDA-MB-231 xenograft animal model. Results showed that melatonin treatment reduced the viability of MDA-MB-231 cells and tumor growth in Balb/c nude mice (p <0.05). The treatment significantly decreased HIF-1α gene and protein expression concomitantly with the expression of GLUT1, GLUT3, CA-IX and CA-XII (p <0.05). These results strongly suggest that melatonin down-regulates HIF-1α expression and regulates glucose metabolism in breast tumor cells, therefore, controlling hypoxia and tumor progression. 


Sign in / Sign up

Export Citation Format

Share Document