scholarly journals Sensitive Detection of Francisella tularensis Directly from Whole Blood by Use of the GeneXpert System

2016 ◽  
Vol 55 (1) ◽  
pp. 291-301 ◽  
Author(s):  
Padmapriya P. Banada ◽  
Srinidhi Deshpande ◽  
Soumitesh Chakravorty ◽  
Riccardo Russo ◽  
James Occi ◽  
...  

ABSTRACTFrancisella tularensisis a potential bioterrorism agent that is highly infectious at very low doses. Diagnosis of tularemia by blood culture and nucleic acid-based diagnostic tests is insufficiently sensitive. Here, we demonstrate a highly sensitiveF. tularensisassay that incorporates sample processing and detection into a single cartridge suitable for point-of-care detection. The assay limit of detection (LOD) and dynamic range were determined in a filter-based cartridge run on the GeneXpert system.F. tularensisDNA in buffer or CFU ofF. tularensiswas spiked into human or macaque blood. To simulate detection in human disease, the assay was tested on blood drawn from macaques infected withF. tularensisSchu S4 at daily intervals. Assay detection was compared to that with a conventional quantitative PCR (qPCR) assay and blood culture. The assay LOD was 0.1 genome equivalents (GE) per reaction and 10 CFU/mlF. tularensisin both human and macaque blood. In infected macaques, the assay detectedF. tularensison days 1 to 4 postinfection in 21%, 17%, 60%, and 83% of macaques, respectively, compared to conventional qPCR positivity rates of 0%, 0%, 30%, and 100% and CFU detection of blood culture at 0%, 0%, 0%, and 10% positive, respectively. Assay specificity was 100%. The new cartridge-based assay can rapidly detectF. tularensisin bloodstream infections directly in whole blood at the early stages of infection with a sensitivity that is superior to that of other methods. The simplicity of the automated testing procedures may make this test suitable for rapid point-of-care detection.

2017 ◽  
Vol 55 (10) ◽  
pp. 2964-2971 ◽  
Author(s):  
Padmapriya P. Banada ◽  
Srinidhi Deshpande ◽  
Riccardo Russo ◽  
Eric Singleton ◽  
Darshini Shah ◽  
...  

ABSTRACT Bacillus anthracis is a tier 1 select agent with the potential to quickly cause severe disease. Rapid identification of this pathogen may accelerate treatment and reduce mortality in the event of a bioterrorism attack. We developed a rapid and sensitive assay to detect B. anthracis bacteremia using a system that is suitable for point-of-care testing. A filter-based cartridge that included both sample processing and PCR amplification functions was loaded with all reagents needed for sample processing and multiplex nested PCR. The assay limit of detection (LOD) and dynamic range were determined by spiking B. anthracis DNA into individual PCR mixtures and B. anthracis CFU into human blood. One-milliliter blood samples were added to the filter-based detection cartridge and tested for B. anthracis on a GeneXpert instrument. Assay specificity was determined by testing blood spiked with non-anthrax bacterial isolates or by testing blood samples drawn from patients with concurrent non- B. anthracis bacteremia or nonbacteremic controls. The assay LODs were 5 genome equivalents per reaction and 10 CFU/ml blood for both the B. anthracis Sterne and V1B strains. There was a 6-log 10 dynamic range. Assay specificity was 100% for tests of non- B. anthracis bacterial isolates and patient blood samples. Assay time was less than 90 min. This automated system suitable for point-of-care detection rapidly identifies B. anthracis directly from blood with high sensitivity. This assay might lead to early detection and more rapid therapy in the event of a bioterrorism attack.


2019 ◽  
Vol 57 (5) ◽  
Author(s):  
Padmapriya P. Banada ◽  
Srinidhi Deshpande ◽  
Sukalyani Banik ◽  
Darshini Shah ◽  
Ranie Koshy ◽  
...  

ABSTRACT Francisella tularensis, Bacillus anthracis, and Yersinia pestis are tier 1 select agents with the potential to rapidly cause severe disease. Rapid detection of these bacteria from patient samples at the point of care could contribute to improved clinical outcomes in the event of a bioterrorism attack. A multiplex nested PCR assay for detection of F. tularensis, B. anthracis, and Y. pestis directly from patient blood samples was developed using the GeneXpert system. The multiplex GeneXpert cartridge-based assay includes all necessary sample processing and amplification reagents. Blood samples spiked with different numbers of CFU were used to measure the analytical limit of detection (LOD) and dynamic range. Sensitivity was determined by testing spiked blood samples and negative-control blood in a blind manner. Specificity was determined by testing against nontarget pathogens and blood samples from clinical patients. The assay LOD was 8.5 CFU/ml for F. tularensis, 10 CFU/ml for B. anthracis, and 4.5 CFU/ml for Y. pestis. The sensitivity was 100% at the LOD for all three select agent bacteria in spiked patient blood samples. The assay specificity was 100% when it was tested against both nontarget pathogens and clinical patient blood samples. The total assay time was approximately 100 min. This automated assay, which is suitable for use at the point of care, identifies three select agents directly in blood without the need for enrichment with a high sensitivity within 100 min. This assay may enable rapid detection and treatment of patients infected with the target organisms in the event of a bioterrorism attack.


Author(s):  
Anjan Panneer Selvam ◽  
Shalini Prasad

A nanochannel-based electrochemical biosensor has been demonstrated for rapid and multiplexed detection of a panel of three biomarkers associated with rapid detection of sepsis. The label-free biosensor detected procalcitonin (PCT), lipoteichoic acid (LTA), and lipopolysaccharide (LPS) from human whole blood. The biosensor comprises a nanoporous nylon membrane integrated onto a microelectrode sensor platform for nanoconfinement effects. Charge perturbations due to biomarker binding are recorded as impedance changes using electrochemical impedance spectroscopy. The measured impedance change is used to quantitatively determine the concentration of the three biomarkers using antibody receptors from the tested sample. We were successful in detecting and quantifying the three biomarkers from whole blood. The limit of detection was 0.1 ng/mL for PCT and 1 µg/mL for LPS and LTA. The sensor was able to demonstrate a dynamic range of detection from 01.1 ng/mL to 10 µg/mL for PCT and from 1 µg/mL to 1000 µg/mL for LPS and LTA biomarkers. This novel technology has promising preliminary results toward the design of sensors for rapid and sensitive detection of the three panel biomarkers in whole blood toward diagnosis and classification of sepsis.


2017 ◽  
Vol 22 (3) ◽  
pp. 338-347 ◽  
Author(s):  
Anjan Panneer Selvam ◽  
Shalini Prasad

A nanochannel-based electrochemical biosensor has been demonstrated for rapid and multiplexed detection of a panel of three biomarkers associated with rapid detection of sepsis. The label-free biosensor detected procalcitonin (PCT), lipoteichoic acid (LTA), and lipopolysaccharide (LPS) from human whole blood. The biosensor comprises a nanoporous nylon membrane integrated onto a microelectrode sensor platform for nanoconfinement effects. Charge perturbations due to biomarker binding are recorded as impedance changes using electrochemical impedance spectroscopy. The measured impedance change is used to quantitatively determine the concentration of the three biomarkers using antibody receptors from the tested sample. We were successful in detecting and quantifying the three biomarkers from whole blood. The limit of detection was 0.1 ng/mL for PCT and 1 µg/mL for LPS and LTA. The sensor was able to demonstrate a dynamic range of detection from 01.1 ng/mL to 10 µg/mL for PCT and from 1 µg/mL to 1000 µg/mL for LPS and LTA biomarkers. This novel technology has promising preliminary results toward the design of sensors for rapid and sensitive detection of the three panel biomarkers in whole blood toward diagnosis and classification of sepsis.


2021 ◽  
Vol 27 (Supplement_1) ◽  
pp. S57-S57
Author(s):  
Edgar Ong ◽  
Ruo Huang ◽  
Richard Kirkland ◽  
Michael Hale ◽  
Larry Mimms

Abstract Introduction A fast (<5 min), time-resolved fluorescence resonance energy transfer (FRET)-based immunoassay was developed for the quantitative detection of infliximab (IFX) and biosimilars for use in therapeutic drug monitoring using only 20 µL of fingerstick whole blood or serum at the point-of-care. The Procise IFX assay and ProciseDx analyzer are CE-marked. Studies were performed to characterize analytical performance of the Procise IFX assay on the ProciseDx analyzer. Methods Analytical testing was performed by spiking known amounts of IFX into negative serum and whole blood specimens. Analytical sensitivity was determined using limiting concentrations of IFX. Linearity was determined by testing IFX across the assay range. Hook effect was assessed at IFX concentrations beyond levels expected to be found within a patient. Testing of assay precision, cross-reactivity and potential interfering substances, and biosimilars was performed. The Procise IFX assay was also compared head-to-head with another CE-marked assay: LISA-TRACKER infliximab ELISA test (Theradiag, France). The accuracy of the Procise IFX assay is established through calibrators and controls traceable to the WHO 1st International Standard for Infliximab (NIBSC code: 16/170). Results The Procise IFX assay shows a Limit of Blank, Limit of Detection, and Lower Limit of Quantitation (LLoQ) of 0.1, 0.2, and 1.1 µg/mL in serum and 0.6, 1.1, and 1.7 µg/mL in whole blood, respectively. The linear assay range was determined to be 1.7 to 77.2 µg/mL in serum and whole blood. No hook effect was observed at an IFX concentration of 200 µg/mL as the value reported as “>ULoQ”. Assay precision testing across 20 days with multiple runs and reagent lots showed an intra-assay coefficient of variation (CV) of 2.7%, an inter-assay CV of <2%, and a total CV of 3.4%. The presence of potentially interfering/cross-reacting substances showed minimal impact on assay specificity with %bias within ±8% of control. Testing of biosimilars (infliximab-dyyb and infliximab-abda) showed good recovery. A good correlation to the Theradiag infliximab ELISA was obtained for both serum (slope=1.01; r=0.99) and whole blood (slope=1.01; r=0.98) samples (Figure 1). Conclusion Results indicate that the Procise IFX assay is sensitive, specific, and precise yielding results within 5 minutes from both whole blood and serum without the operator needing to specify sample type. Additionally, it shows very good correlation to a comparator assay that takes several hours and sample manipulation to yield results. This makes the Procise IFX assay ideal for obtaining fast and accurate IFX quantitation, thus allowing for immediate drug level dosing decisions to be made by the physician during patient treatment.


Author(s):  
Yang Zheng ◽  
Jun Jin ◽  
Ziqiang Shao ◽  
Jingquan Liu ◽  
Run Zhang ◽  
...  

The relatively long turnaround time and low sensitivity of traditional blood culture may delay the effective antibiotic therapy in patients with bloodstream infection (BSI). To reduce the morbidity and mortality of BSI, a rapid and sensitive pathogen detection method is urgently required. Acinetobacter baumannii and Klebsiella pneumonia are two major microorganisms responsible for BSI. Here we reported a novel droplet digital PCR (ddPCR) method that can detect A. baumannii and K. pneumonia in whole blood samples within 4 h, with a specificity of 100% for each strain and limit of detection at 0.93 copies/microliter for A. baumannii and 0.27 copies/microliter for K. pneumonia. Clinical validation in 170 patients with suspected BSIs showed that, compared with blood culture that reported 4 (2.4%) A. baumannii cases and 7 (4.1%) K. pneumonia cases, ddPCR detected 23 (13.5%) A. baumannii cases, 26 (15.3%) K. pneumonia cases, and 4 (2.4%) dual infection cases, including the 11 positive patients reported by blood culture. In addition, the positive patients reported by ddPCR alone (n = 42) had significantly lower serum concentrations of procalcitonin and lactate, SOFA and APACHE II scores, and 28-day mortality than those reported by both blood culture and ddPCR (n = 11), suggesting that patients with less severe manifestations can potentially benefit from the guidance of ddPCR results. In conclusion, our study suggests that ddPCR represents a sensitive and rapid method to identify causal pathogens in blood samples and to guide the treatment decisions in the early stage of BSI.


2018 ◽  
Vol 56 (9) ◽  
Author(s):  
Paul A. Granato ◽  
Melissa M. Unz ◽  
Raymond H. Widen ◽  
Suzane Silbert ◽  
Stephen Young ◽  
...  

ABSTRACT The iC-GPC Assay (iCubate, Huntsville, AL) is a qualitative multiplex test for the detection of five of the most common Gram-positive bacteria (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Enterococcus faecalis, and Enterococcus faecium) responsible for bacterial bloodstream infections, performed directly from positive blood cultures. The assay also detects the presence of the mecA, vanA, and vanB resistance determinants. This study comparatively evaluated the performance of the iC-GPC Assay against the Verigene Gram-positive blood culture (BC-GP) assay (Luminex Corp., Austin, TX) for 1,134 patient blood culture specimens positive for Gram-positive cocci. The iC-GPC Assay had an overall percent agreement with the BC-GP assay of 95.5%. Discordant specimens were further analyzed by PCR and a bidirectional sequencing method. The results indicate that the iC-GPC Assay together with the iCubate system is an accurate and reliable tool for the detection of the five most common Gram-positive bacteria and their resistance markers responsible for bloodstream infections.


2011 ◽  
Vol 57 (5) ◽  
pp. 753-761 ◽  
Author(s):  
Ulrich Y Schaff ◽  
Greg J Sommer

BACKGROUND Centrifugal “lab on a disk” microfluidics is a promising avenue for developing portable, low-cost, automated immunoassays. However, the necessity of incorporating multiple wash steps results in complicated designs that increase the time and sample/reagent volumes needed to run assays and raises the probability of errors. We present proof of principle for a disk-based microfluidic immunoassay technique that processes blood samples without conventional wash steps. METHODS Microfluidic disks were fabricated from layers of patterned, double-sided tape and polymer sheets. Sample was mixed on-disk with assay capture beads and labeling antibodies. Following incubation, the assay beads were physically separated from the blood cells, plasma, and unbound label by centrifugation through a density medium. A signal-laden pellet formed at the periphery of the disk was analyzed to quantify concentration of the target analyte. RESULTS To demonstrate this technique, the inflammation biomarkers C-reactive protein and interleukin-6 were measured from spiked mouse plasma and human whole blood samples. On-disk processing (mixing, labeling, and separation) facilitated direct assays on 1-μL samples with a 15-min sample-to-answer time, <100 pmol/L limit of detection, and 10% CV. We also used a unique single-channel multiplexing technique based on the sedimentation rate of different size or density bead populations. CONCLUSIONS This portable microfluidic system is a promising method for rapid, inexpensive, and automated detection of multiple analytes directly from a drop of blood in a point-of-care setting.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2724
Author(s):  
Fabio Savini ◽  
Angela Tartaglia ◽  
Ludovica Coccia ◽  
Danilo Palestini ◽  
Cristian D’Ovidio ◽  
...  

Ethanol (ethylic alcohol) represents the most commonly used drug worldwide and is often involved in clinical and forensic toxicology. Based on several reports, excessive alcohol consumption is the main contributing factor in traffic accidents, drownings, suicides, and other crimes. For these reasons, it becomes essential to analyze the alcohol concentration during autopsy. Although blood is usually used for alcohol analysis in post-mortem cases, it could suffer alterations, putrefaction, and microbial contaminations. As an alternative to whole blood, vitreous humor has been successfully used in medico-legal studies. In this work, post-mortem specimens were analyzed for ethanol determination. The analysis of blood and vitreous humor were carried-out using gas chromatography-flame ionized detector (GC-FID) with a total run time of 6 min. The method was validated in terms of limit of detection, limit of quantification, dynamic range, sensibility, recovery, precision and trueness. A linear regression analysis indicated a coefficient of determination (R2) of 0.9981. The study confirmed no statistically differences between alcohol concentration in blood and vitreous humor, leading vitreous humor as an excellent matrix that could be used as an alternative to whole blood in toxicological analysis in cases where blood is not available.


2017 ◽  
Vol 55 (7) ◽  
pp. 2116-2126 ◽  
Author(s):  
Matthias Marschal ◽  
Johanna Bachmaier ◽  
Ingo Autenrieth ◽  
Philipp Oberhettinger ◽  
Matthias Willmann ◽  
...  

ABSTRACT Bloodstream infections (BSI) are an important cause of morbidity and mortality. Increasing rates of antimicrobial-resistant pathogens limit treatment options, prompting an empirical use of broad-range antibiotics. Fast and reliable diagnostic tools are needed to provide adequate therapy in a timely manner and to enable a de-escalation of treatment. The Accelerate Pheno system (Accelerate Diagnostics, USA) is a fully automated test system that performs both identification and antimicrobial susceptibility testing (AST) directly from positive blood cultures within approximately 7 h. In total, 115 episodes of BSI with Gram-negative bacteria were included in our study and compared to conventional culture-based methods. The Accelerate Pheno system correctly identified 88.7% (102 of 115) of all BSI episodes and 97.1% (102 of 105) of isolates that are covered by the system's identification panel. The Accelerate Pheno system generated an AST result for 91.3% (95 of 104) samples in which the Accelerate Pheno system identified a Gram-negative pathogen. The overall category agreement between the Accelerate Pheno system and culture-based AST was 96.4%, the rates for minor discrepancies 1.4%, major discrepancies 2.3%, and very major discrepancies 1.0%. Of note, ceftriaxone, piperacillin-tazobactam, and carbapenem resistance was correctly detected in blood culture specimens with extended-spectrum beta-lactamase-producing Escherichia coli ( n = 7) and multidrug-resistant Pseudomonas aeruginosa ( n = 3) strains. The utilization of the Accelerate Pheno system reduced the time to result for identification by 27.49 h ( P < 0.0001) and for AST by 40.39 h ( P < 0.0001) compared to culture-based methods in our laboratory setting. In conclusion, the Accelerate Pheno system provided fast, reliable results while significantly improving turnaround time in blood culture diagnostics of Gram-negative BSI.


Sign in / Sign up

Export Citation Format

Share Document