scholarly journals Chlamydia pneumoniae in a Free-Ranging Giant Barred Frog (Mixophyes iteratus) from Australia

1999 ◽  
Vol 37 (7) ◽  
pp. 2378-2380 ◽  
Author(s):  
Lee Berger ◽  
Kym Volp ◽  
Sarah Mathews ◽  
Rick Speare ◽  
Peter Timms

The koala biovar of Chlamydia pneumoniae was identified in lung tissue from a sick, free-ranging giant barred frog (Mixophyes iteratus) by using electron microscopy, C. pneumoniae-specific fluorescent-antibody staining, cell culture, and sequencing of the ompA, ompB and 16S rRNA genes. This is the first report of a chlamydial strain infecting both a homeotherm and a poikilotherm and only the fourth host (in addition to humans, koalas, and horses) to be naturally infected with this species of Chlamydia. The frog had severe, chronic, mononuclear pneumonia and nonregenerative anemia and pancytopenia.

2004 ◽  
Vol 10 (4) ◽  
pp. 360-369 ◽  
Author(s):  
C Contini ◽  
R Cultrera ◽  
S Seraceni ◽  
M Castellazzi ◽  
E Granieri ◽  
...  

To further explore the link between Chlamydia pneumoniae and multiple sclerosis (MS), we examined cerebrospinal fluid (CSF) samples from 71 patients with MS and from 72 patients suffering from other inflammatory neurological disorders (OIND) or noninflammatory neurological disorders (NIND). All samples were analysed by a touchdown nested polymerase chain reaction (n-PCR) forC. pneumoniae with primer sets which amplify target sequence genes encoding the major outer membrane protein (MOMP), the16S rRNA and the Hsp- 70 protein. A molecular study was also performed to evaluate genetic diversity among isolates of C. pneumoniae and to compare chlamydial sequences. PCR was found positive in 36.6% of total MS, in 28.1% of OIND and in 37.5% of NIND patients, without any statistical differences among the various groups examined. CSF PCR evidence of C. pneumoniae was significantly more frequent in relapsing-remitting (RR) than in secondary progressive (SP) (PB-0.001) and in primary progressive (PP)MS (PB-0.05), in clinically active than in clinically stable MS (PB-0.05) and in MRI active than in MRI inactive MS(PB-0.001). The analysis of CSF expression of each single C. pneumoniae-specific gene revealed that detectable levels of MOMP were significantly more frequent in MS patients with relapse (PB-0.05), whereas PCR positivity for MOMP and 16S rRNA genes were more represented in MS patients with clinical and MRI evidence of disease activity (PB-0.05). Similar rates for MOMP and 16S rRNA genes were detected in CSF of both MS patients and controls, whereas CSF PCR positivity for Hsp-70 gene was observed in only three active RR MS patients. Sequence analysis revealed significant homologies withC. pneumoniae compared to otherChlamydial spp. These findings confirm that theC. pneumoniae detection within the central nervous system (CNS) is not selectively restricted to MS, but accounts in a variety of neurological diseases. In addition, our results suggest that CSF C. pneumoniae-specific DNA detection can occur in a subset of MS patients with clinical and MRI active RR form in whom a C. pneumoniae brain chronic persistent infection may play a significant role in the development of disease.


1998 ◽  
Vol 36 (7) ◽  
pp. 2112-2114 ◽  
Author(s):  
Kirk M. Doing ◽  
Mary Ann Jerkofsky ◽  
Elaine G. Dow ◽  
Jo Ann Jellison

Over a 3-year period, 1,003 respiratory samples were collected and examined for selected respiratory viruses with cytocentrifuged prepared smears stained with fluorescently labeled antibodies (IFA) in conjunction with cell culture. IFA results were compared with results obtained by cell culture. Viruses were isolated or detected by direct means in 401 samples. Agreement between culture and IFA was 90%.


1998 ◽  
Vol 36 (7) ◽  
pp. 1890-1894 ◽  
Author(s):  
Christian A. Jantos ◽  
Rüdiger Roggendorf ◽  
Frederik N. Wuppermann ◽  
Johannes H. Hegemann

Chlamydia pneumoniae is an important human respiratory pathogen. Laboratory diagnosis of infection with this organism is difficult. To facilitate the detection of C. pneumoniae by PCR, an enzyme immunoassay (EIA) for analysis of PCR products was developed. Biotin-labeled PCR products generated from the 16S rRNA gene of C. pneumoniae were hybridized to a digoxigenin-labeled probe and then immobilized to streptavidin-coated microtiter plates. Bound PCR product-probe hybrids were detected with antidigoxigenin peroxidase conjugate and a colorimetric substrate. This EIA was as sensitive as Southern blot hybridization for the detection of PCR products and 100 times more sensitive than visualization of PCR products on agarose gels. The diagnostic value of the PCR-EIA in comparison to cell culture was assessed in throat swab specimens from children with respiratory tract infections. C. pneumoniaewas isolated from only 1 of 368 specimens tested. In contrast, 15 patient specimens were repeatedly positive for C. pneumoniae by PCR and Southern analysis. All of these 15 specimens were also identified by PCR-EIA. Of the 15 specimens positive by 16S rRNA-based PCR, 13 specimens could be confirmed byomp1-based PCR or direct fluorescent-antibody assay. Results of this study demonstrate that PCR is more sensitive than cell culture for the detection of C. pneumoniae. The EIA described here is a rapid, sensitive, and simple method for detection of amplified C. pneumoniae DNA.


2015 ◽  
Vol 41 (1) ◽  
pp. 51-58
Author(s):  
Mohammad Shamimul Alam ◽  
Hawa Jahan ◽  
Rowshan Ara Begum ◽  
Reza M Shahjahan

Heteropneustesfossilis, Clariasbatrachus and C. gariepinus are three major catfishes ofecological and economic importance. Identification of these fish species becomes aproblem when the usual external morphological features of the fish are lost or removed,such as in canned fish. Also, newly hatched fish larva is often difficult to identify. PCRsequencingprovides accurate alternative means of identification of individuals at specieslevel. So, 16S rRNA genes of three locally collected catfishes were sequenced after PCRamplification and compared with the same gene sequences available from othergeographical regions. Multiple sequence alignment of the 16S rRNA gene fragments ofthe catfish species has revealed polymorphic sites which can be used to differentiate thesethree species from one another and will provide valuable insight in choosing appropriaterestriction enzymes for PCR-RFLP based identification in future. Asiat. Soc. Bangladesh, Sci. 41(1): 51-58, June 2015


Genes ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 40
Author(s):  
Liang Cui ◽  
Bitong Zhu ◽  
Xiaobo Zhang ◽  
Zhuhua Chan ◽  
Chungui Zhao ◽  
...  

The elevated NH3-N and NO2-N pollution problems in mariculture have raised concerns because they pose threats to animal health and coastal and offshore environments. Supplement of Marichromatium gracile YL28 (YL28) into polluted shrimp rearing water and sediment significantly decreased ammonia and nitrite concentrations, showing that YL28 functioned as a novel safe marine probiotic in the shrimp culture industry. The diversity of aquatic bacteria in the shrimp mariculture ecosystems was studied by sequencing the V4 region of 16S rRNA genes, with respect to additions of YL28 at the low and high concentrations. It was revealed by 16S rRNA sequencing analysis that Proteobacteria, Planctomycete and Bacteroidetes dominated the community (>80% of operational taxonomic units (OTUs)). Up to 41.6% of the predominant bacterial members were placed in the classes Gammaproteobacteria (14%), Deltaproteobacteria (14%), Planctomycetacia (8%) and Alphaproteobacteria (5.6%) while 40% of OTUs belonged to unclassified ones or others, indicating that the considerable bacterial populations were novel in our shrimp mariculture. Bacterial communities were similar between YL28 supplements and control groups (without addition of YL28) revealed by the β-diversity using PCoA, demonstrating that the additions of YL28 did not disturb the microbiota in shrimp mariculture ecosystems. Instead, the addition of YL28 increased the relative abundance of ammonia-oxidizing and denitrifying bacteria. The quantitative PCR analysis further showed that key genes including nifH and amoA involved in nitrification and nitrate or nitrite reduction significantly increased with YL28 supplementation (p < 0.05). The supplement of YL28 decreased the relative abundance of potential pathogen Vibrio. Together, our studies showed that supplement of YL28 improved the water quality by increasing the relative abundance of ammonia-oxidizing and denitrifying bacteria while the microbial community structure persisted in shrimp mariculture ecosystems.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Benjamin J. Callahan ◽  
Dmitry Grinevich ◽  
Siddhartha Thakur ◽  
Michael A. Balamotis ◽  
Tuval Ben Yehezkel

Abstract Background Out of the many pathogenic bacterial species that are known, only a fraction are readily identifiable directly from a complex microbial community using standard next generation DNA sequencing. Long-read sequencing offers the potential to identify a wider range of species and to differentiate between strains within a species, but attaining sufficient accuracy in complex metagenomes remains a challenge. Methods Here, we describe and analytically validate LoopSeq, a commercially available synthetic long-read (SLR) sequencing technology that generates highly accurate long reads from standard short reads. Results LoopSeq reads are sufficiently long and accurate to identify microbial genes and species directly from complex samples. LoopSeq perfectly recovered the full diversity of 16S rRNA genes from known strains in a synthetic microbial community. Full-length LoopSeq reads had a per-base error rate of 0.005%, which exceeds the accuracy reported for other long-read sequencing technologies. 18S-ITS and genomic sequencing of fungal and bacterial isolates confirmed that LoopSeq sequencing maintains that accuracy for reads up to 6 kb in length. LoopSeq full-length 16S rRNA reads could accurately classify organisms down to the species level in rinsate from retail meat samples, and could differentiate strains within species identified by the CDC as potential foodborne pathogens. Conclusions The order-of-magnitude improvement in length and accuracy over standard Illumina amplicon sequencing achieved with LoopSeq enables accurate species-level and strain identification from complex- to low-biomass microbiome samples. The ability to generate accurate and long microbiome sequencing reads using standard short read sequencers will accelerate the building of quality microbial sequence databases and removes a significant hurdle on the path to precision microbial genomics.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Yusuke Okazaki ◽  
Shohei Fujinaga ◽  
Michaela M. Salcher ◽  
Cristiana Callieri ◽  
Atsushi Tanaka ◽  
...  

Abstract Background Freshwater ecosystems are inhabited by members of cosmopolitan bacterioplankton lineages despite the disconnected nature of these habitats. The lineages are delineated based on > 97% 16S rRNA gene sequence similarity, but their intra-lineage microdiversity and phylogeography, which are key to understanding the eco-evolutional processes behind their ubiquity, remain unresolved. Here, we applied long-read amplicon sequencing targeting nearly full-length 16S rRNA genes and the adjacent ribosomal internal transcribed spacer sequences to reveal the intra-lineage diversities of pelagic bacterioplankton assemblages in 11 deep freshwater lakes in Japan and Europe. Results Our single nucleotide-resolved analysis, which was validated using shotgun metagenomic sequencing, uncovered 7–101 amplicon sequence variants for each of the 11 predominant bacterial lineages and demonstrated sympatric, allopatric, and temporal microdiversities that could not be resolved through conventional approaches. Clusters of samples with similar intra-lineage population compositions were identified, which consistently supported genetic isolation between Japan and Europe. At a regional scale (up to hundreds of kilometers), dispersal between lakes was unlikely to be a limiting factor, and environmental factors or genetic drift were potential determinants of population composition. The extent of microdiversification varied among lineages, suggesting that highly diversified lineages (e.g., Iluma-A2 and acI-A1) achieve their ubiquity by containing a consortium of genotypes specific to each habitat, while less diversified lineages (e.g., CL500-11) may be ubiquitous due to a small number of widespread genotypes. The lowest extent of intra-lineage diversification was observed among the dominant hypolimnion-specific lineage (CL500-11), suggesting that their dispersal among lakes is not limited despite the hypolimnion being a more isolated habitat than the epilimnion. Conclusions Our novel approach complemented the limited resolution of short-read amplicon sequencing and limited sensitivity of the metagenome assembly-based approach, and highlighted the complex ecological processes underlying the ubiquity of freshwater bacterioplankton lineages. To fully exploit the performance of the method, its relatively low read throughput is the major bottleneck to be overcome in the future.


2005 ◽  
Vol 71 (10) ◽  
pp. 6308-6318 ◽  
Author(s):  
Helen A. Vrionis ◽  
Robert T. Anderson ◽  
Irene Ortiz-Bernad ◽  
Kathleen R. O'Neill ◽  
Charles T. Resch ◽  
...  

ABSTRACT The geochemistry and microbiology of a uranium-contaminated subsurface environment that had undergone two seasons of acetate addition to stimulate microbial U(VI) reduction was examined. There were distinct horizontal and vertical geochemical gradients that could be attributed in large part to the manner in which acetate was distributed in the aquifer, with more reduction of Fe(III) and sulfate occurring at greater depths and closer to the point of acetate injection. Clone libraries of 16S rRNA genes derived from sediments and groundwater indicated an enrichment of sulfate-reducing bacteria in the order Desulfobacterales in sediment and groundwater samples. These samples were collected nearest the injection gallery where microbially reducible Fe(III) oxides were highly depleted, groundwater sulfate concentrations were low, and increases in acid volatile sulfide were observed in the sediment. Further down-gradient, metal-reducing conditions were present as indicated by intermediate Fe(II)/Fe(total) ratios, lower acid volatile sulfide values, and increased abundance of 16S rRNA gene sequences belonging to the dissimilatory Fe(III)- and U(VI)-reducing family Geobacteraceae. Maximal Fe(III) and U(VI) reduction correlated with maximal recovery of Geobacteraceae 16S rRNA gene sequences in both groundwater and sediment; however, the sites at which these maxima occurred were spatially separated within the aquifer. The substantial microbial and geochemical heterogeneity at this site demonstrates that attempts should be made to deliver acetate in a more uniform manner and that closely spaced sampling intervals, horizontally and vertically, in both sediment and groundwater are necessary in order to obtain a more in-depth understanding of microbial processes and the relative contribution of attached and planktonic populations to in situ uranium bioremediation.


Sign in / Sign up

Export Citation Format

Share Document