scholarly journals Aerococcus urinae in Urinary Tract Infections

2000 ◽  
Vol 38 (4) ◽  
pp. 1703-1705 ◽  
Author(s):  
Qing Zhang ◽  
Christopher Kwoh ◽  
Silvia Attorri ◽  
Jill E. Clarridge

Aerococcus urinae is a rarely reported pathogen, possibly due to difficulties in the identification of the organism.A. urinae is a gram-positive coccus that grows in pairs and clusters, produces alpha-hemolysis on blood agar, and is negative for catalase and pyrrolidonyl aminopeptidase. Some of these characteristics and its being absent from the databases of most commercial identification systems could allow A. urinae to be misidentified as a streptococcus, enterococcus, or staphylococcus. We report two cases of urinary tract infection (UTI) caused by A. urinae and characterize these isolates by morphology, biochemical testing, whole-cell fatty acid analysis, 16S rRNA gene sequencing, and antibiotic susceptibilities. Most patients infected with A. urinae are elderly males with predisposing conditions who present initially with UTI. Because A. urinae is resistant to sulfonamides, treatment could be inappropriate, with infections resulting in serious complications, including death. It is important for the clinician and the microbiologist to consider A. urinae a potential pathogen and proceed with thorough microbiological identification.

2014 ◽  
Vol 63 (6) ◽  
pp. 805-811 ◽  
Author(s):  
Siu-Kei Chow ◽  
Jill E. Clarridge

The identification of Haemophilus spp. from urogenital sites can be challenging due to the lack of appropriate media for culturing the organisms and the poor resolution of biochemical methods. By incorporating chocolate agar and 16S rRNA gene sequence analysis in our protocol to identify Haemophilus spp. from urinary specimens, we isolated and characterized 30 genetically homogeneous strains of a cryptic species that is phylogenetically close to, but distinct from, Haemophilus parainfluenzae. Commercial biochemical kits and VITEK 2 could not distinguish between the two species. Over 90 % of the strains were isolated from urine and the urogenital area, made possible with the inclusion of chocolate agar in our urine culture protocol. In contrast, no Haemophilus strains isolated from respiratory specimens were identified as the cryptic genospecies. The cryptic genospecies was associated with urinary tract infections (UTIs) in certain patient populations. Distinct from Haemophilus quentinii that also causes urogenital infection, the cryptic genospecies required V factor (NAD) but not X factor (haemin) to grow. The data indicated that 16S rRNA gene sequencing may be necessary in identifying Haemophilus species and that inaccurate categorization of Haemophilus strains isolated from urogenital specimens based on phenotypic characteristics may prevent accurate diagnosis of UTIs.


Author(s):  
David L. Kirchman

Community structure refers to the taxonomic types of microbes and their relative abundance in an environment. This chapter focuses on bacteria with a few words about fungi; protists and viruses are discussed in Chapters 9 and 10. Traditional methods for identifying microbes rely on biochemical testing of phenotype observable in the laboratory. Even for cultivated microbes and larger organisms, the traditional, phenotype approach has been replaced by comparing sequences of specific genes, those for 16S rRNA (archaea and bacteria) or 18S rRNA (microbial eukaryotes). Cultivation-independent approaches based on 16S rRNA gene sequencing have revealed that natural microbial communities have a few abundant types and many rare ones. These organisms differ substantially from those that can be grown in the laboratory using cultivation-dependent approaches. The abundant types of microbes found in soils, freshwater lakes, and oceans all differ. Once thought to be confined to extreme habitats, Archaea are now known to occur everywhere, but are particularly abundant in the deep ocean, where they make up as much as 50% of the total microbial abundance. Dispersal of bacteria and other small microbes is thought to be easy, leading to the Bass Becking hypothesis that “everything is everywhere, but the environment selects.” Among several factors known to affect community structure, salinity and temperature are very important, as is pH especially in soils. In addition to bottom-up factors, both top-down factors, grazing and viral lysis, also shape community structure. According to the Kill the Winner hypothesis, viruses select for fast-growing types, allowing slower growing defensive specialists to survive. Cultivation-independent approaches indicate that fungi are more diverse than previously appreciated, but they are less diverse than bacteria, especially in aquatic habitats. The community structure of fungi is affected by many of the same factors shaping bacterial community structure, but the dispersal of fungi is more limited than that of bacteria. The chapter ends with a discussion about the relationship between community structure and biogeochemical processes. The value of community structure information varies with the process and the degree of metabolic redundancy among the community members for the process.


Thorax ◽  
2019 ◽  
Vol 74 (6) ◽  
pp. 592-599 ◽  
Author(s):  
Laura Toivonen ◽  
Kohei Hasegawa ◽  
Matti Waris ◽  
Nadim J Ajami ◽  
Joseph F Petrosino ◽  
...  

BackgroundEmerging evidence shows that airway microbiota may modulate local immune responses, thereby contributing to the susceptibility and severity of acute respiratory infections (ARIs). However, there are little data on the longitudinal relationships between airway microbiota and susceptibility to ARIs in children.ObjectiveWe aimed to investigate the association of early nasal microbiota and the subsequent risk of ARIs during the first years of life.MethodsIn this prospective population-based birth-cohort study in Finland, we followed 839 healthy infants for ARIs from birth to age 24 months. Nasal microbiota was tested using 16S rRNA gene sequencing at age 2 months. We applied an unsupervised clustering approach to identify early nasal microbiota profiles, and examined the association of profiles with the rate of ARIs during age 2–24 months.ResultsWe identified five nasal microbiota profiles dominated by Moraxella, Streptococcus, Dolosigranulum, Staphylococcus and Corynebacteriaceae, respectively. Incidence rate of ARIs was highest in children with an early Moraxella-dominant profile and lowest in those with a Corynebacteriaceae-dominant profile (738 vs 552/100 children years; unadjusted incidence rate ratio (IRR), 1.34; 95% CI 1.16 to 1.54; p < 0.001). After adjusting for nine potential confounders, the Moraxella-dominant profile-ARI association persisted (adjusted IRR (aIRR), 1.19; 95% CI 1.04 to 1.37; p = 0.01). Similarly, the incidence rate of lower respiratory tract infections (a subset of all ARIs) was significantly higher in children with an early Moraxella-dominant profile (aIRR, 2.79; 95% CI 1.04 to 8.09; p = 0.04).ConclusionMoraxella-dominant nasal microbiota profile in early infancy was associated with an increased rate of ARIs during the first 2 years of life.


2006 ◽  
Vol 73 (2) ◽  
pp. 399-406 ◽  
Author(s):  
Sebastian R. Sørensen ◽  
Maria S. Holtze ◽  
Allan Simonsen ◽  
Jens Aamand

ABSTRACT 2,6-Dichlorobenzamide (BAM), a persistent metabolite from the herbicide 2,6-dichlorobenzonitrile (dichlobenil), is the pesticide residue most frequently detected in Danish groundwater. A BAM-mineralizing bacterial community was enriched from dichlobenil-treated soil sampled from the courtyard of a former plant nursery. A BAM-mineralizing bacterium (designated strain MSH1) was cultivated and identified by 16S rRNA gene sequencing and fatty acid analysis as being closely related to members of the genus Aminobacter, including the only cultured BAM degrader, Aminobacter sp. strain ASI1. Strain MSH1 mineralized 15 to 64% of the added [ring-U-14C]BAM to 14CO2 with BAM at initial concentrations in the range of 7.9 nM to 263.1 μM provided as the sole carbon, nitrogen, and energy source. A quantitative enzyme-linked immunoassay analysis with antibodies against BAM revealed residue concentrations of 0.35 to 18.05 nM BAM following incubation for 10 days, corresponding to a BAM depletion of 95.6 to 99.9%. In contrast to the Aminobacter sp. strain ASI1, strain MSH1 also mineralized the herbicide itself along with several metabolites, including ortho-chlorobenzonitrile, ortho-chlorobenzoic acid, and benzonitrile, making it the first known dichlobenil-mineralizing bacterium. Aminobacter type strains not previously exposed to dichlobenil or BAM were capable of degrading nonchlorinated structural analogs. Combined, these results suggest that closely related Aminobacter strains may have a selective advantage in BAM-contaminated environments, since they are able to use this metabolite or structurally related compounds as a carbon and nitrogen source.


2005 ◽  
Vol 55 (1) ◽  
pp. 427-431 ◽  
Author(s):  
Val Hall ◽  
Matthew D. Collins ◽  
Paul A. Lawson ◽  
Enevold Falsen ◽  
Brian I. Duerden

A previously undescribed filamentous, beaded, Gram-positive, rod-shaped bacterium was isolated from pus of a human dental abscess. Based on its cellular morphology and the results of biochemical testing the organism was tentatively identified as a member of the genus Actinomyces, but it did not correspond to any currently recognized species of this genus. Comparative 16S rRNA gene sequencing studies showed the bacterium represents a distinct subline within the genus Actinomyces, clustering within a group of species that includes Actinomyces bovis, the type species of the genus. Sequence divergence values of >8 % with other recognized species within this phylogenetic group clearly demonstrated that the organism represents a hitherto unknown species. Based on biochemical and molecular phylogenetic evidence, it is proposed that the unidentified organism recovered from a dental abscess be classified as a novel species, Actinomyces dentalis sp. nov. The type strain is R18165T (=CCUG 48064T=CIP 108337T).


1998 ◽  
Vol 36 (9) ◽  
pp. 2499-2502 ◽  
Author(s):  
Michael Giladi ◽  
Boaz Avidor ◽  
Yehudith Kletter ◽  
Suzy Abulafia ◽  
Leonard N. Slater ◽  
...  

Since its isolation in 1988, Afipia felis has been associated with cat scratch disease (CSD) in only one report and its role in CSD has been questioned. We have cultured A. felisfrom a lymph node of a patient with CSD. 16S rRNA gene sequencing, DNA relatedness studies, fatty acid analysis, and PCR of the A. felis ferredoxin gene showed that the isolate is identical to the previously reported A. felis isolate. To determine the role of A. felis in CSD, PCR of the 16S rRNA gene followed by hybridizations with specific probes were performed with lymph node specimens from CSD patients. All 32 specimens tested positive forBartonella henselae and negative for A. felis. We conclude that A. felis is a rare cause of CSD. Diagnostic tests not conducive to the identification of A. felis might cause the diagnosis of CSD due to A. felis to be missed.


2000 ◽  
Vol 38 (9) ◽  
pp. 3399-3403 ◽  
Author(s):  
Matthew D. Collins ◽  
Lesley Hoyles ◽  
Sotos Kalfas ◽  
Goran Sundquist ◽  
Tor Monsen ◽  
...  

Two strains of a previously undescribedActinomyces-like bacterium were recovered in pure culture from infected root canals of teeth. Analysis by biochemical testing and polyacrylamide gel electrophoresis of whole-cell proteins indicated that the strains closely resembled each other phenotypically but were distinct from previously described Actinomyces andArcanobacterium species. Comparative 16S rRNA gene-sequencing studies showed the bacterium to be a hitherto unknown subline within a group of Actinomyces species which includes Actinomyces bovis, the type species of the genus. Based on phylogenetic and phenotypic evidence, we propose that the unknown bacterium isolated from human clinical specimens be classified as Actinomyces radicidentis sp. nov. The type strain ofActinomyces radicidentis is CCUG 36733.


2000 ◽  
Vol 38 (11) ◽  
pp. 3991-3993 ◽  
Author(s):  
Sotirios Tsiodras ◽  
Howard S. Gold ◽  
Eoin P. G. Coakley ◽  
Christine Wennersten ◽  
Robert C. Moellering ◽  
...  

The highly conserved central loop of domain V of 23S RNA (nucleotides 2042 to 2628; Escherichia coli numbering) is implicated in peptidyltransferase activity and represents one of the target sites for macrolide, lincosamide, and streptogramin B antibiotics. DNA encoding domain V (590 bp) of several species ofEnterococcus was amplified by PCR. Twenty enterococcal isolates were tested, including Enterococcus faecium (six isolates), Enterococcus faecalis, Enterococcus avium, Enterococcus durans, Enterococcus gallinarum, Enterococcus casseliflavus (two isolates of each), and Enterococcus raffinosus, Enterococcus mundtii, Enterococcus malodoratus, andEnterococcus hirae (one isolate of each). For all isolates, species identification by biochemical testing was corroborated by 16S rRNA gene sequencing. The sequence of domain V of the 23S rRNA gene from E. faecium and E. faecalis differed from those of all other enterococci. The domain V sequences of E. durans and E. hirae were identical. This was also true for E. gallinarum and E. casseliflavus. E. avium differed from E. casseliflavus by 23 bases, from E. durans by 16 bases, and from E. malodoratus by 2 bases. E. avium differed fromE. raffinosus by one base. Despite the fact that domain V is considered to be highly conserved, substantial differences were identified between several enterococcal species.


2004 ◽  
Vol 54 (5) ◽  
pp. 1557-1560 ◽  
Author(s):  
Matthew D. Collins ◽  
Enevold Falsen ◽  
Kit Brownlee ◽  
Paul A. Lawson

A previously undescribed, Gram-positive, catalase-negative, coccus-shaped organism that originated from a human wound was subjected to taxonomic study. On the basis of its cellular morphology and the results of biochemical testing, the unknown organism was identified tentatively as a member of the genus Helcococcus, but it did not correspond to either of the two recognized species of this genus. Comparative 16S rRNA gene sequencing studies confirmed that the bacterium was associated phylogenetically with the genus Helcococcus, with the unidentified organism forming a hitherto unknown subline within the genus. On the basis of biochemical, molecular chemical and molecular phylogenetic evidence, it is proposed that the unknown organism that was recovered from a human wound should be classified as a novel species of the genus Helcococcus, namely Helcococcus sueciensis sp. nov. The type strain is CCUG 47334T (=CIP 108183T).


2006 ◽  
Vol 56 (8) ◽  
pp. 1771-1776 ◽  
Author(s):  
Chun-Ju Tai ◽  
Hsiao-Ping Kuo ◽  
Fwu-Ling Lee ◽  
Han-Ken Chen ◽  
Akira Yokota ◽  
...  

Among a large collection of Taiwanese soil isolates, a novel Gram-negative, rod-shaped, non-spore-forming, yellow-pigmented bacterial strain, Soil-3-27T, was isolated from farmland soil in Wu-Feng, Taiwan. The isolate was subjected to a polyphasic study including 16S rRNA gene sequencing, DNA–DNA hybridization, fatty acid analysis and comparative phenotypic characterization. The 16S rRNA gene sequence analysis indicated that the organism belongs to the genus Chryseobacterium. The organism contains menaquinone MK-6 as the predominant isoprenoid quinone and 15 : 0 iso (43 %), 17 : 1 isoω9c (17.5 %) and 17 : 0 iso 3-OH (16.6 %) as the major fatty acids. Phylogenetically, the closest relatives of strain Soil-3-27T are Chryseobacterium daecheongense, Chryseobacterium defluvii and Chryseobacterium taichungense with 96.7–97.2 % sequence similarity. DNA–DNA hybridization showed relatedness values of 8.5–24.2 % with these species. The DNA G+C content is 36.8 mol%. Strain Soil-3-27T is clearly distinguishable from other Chryseobacterium species and represents a novel species, for which the name Chryseobacterium taiwanense sp. nov. is proposed. The type strain is strain Soil-3-27T (=BCRC 17412T=IAM 15317T=LMG 23355T).


Sign in / Sign up

Export Citation Format

Share Document