scholarly journals Recovery of Avian Metapneumovirus Subgroup C from cDNA: Cross-Recognition of Avian and Human Metapneumovirus Support Proteins

2006 ◽  
Vol 80 (12) ◽  
pp. 5790-5797 ◽  
Author(s):  
Dhanasekaran Govindarajan ◽  
Ursula J. Buchholz ◽  
Siba K. Samal

ABSTRACT Avian metapneumovirus (AMPV) causes an acute respiratory disease in turkeys and is associated with “swollen head syndrome” in chickens, contributing to significant economic losses for the U.S. poultry industry. With a long-term goal of developing a better vaccine for controlling AMPV in the United States, we established a reverse genetics system to produce infectious AMPV of subgroup C entirely from cDNA. A cDNA clone encoding the entire 14,150-nucleotide genome of AMPV subgroup C strain Colorado (AMPV/CO) was generated by assembling five cDNA fragments between the T7 RNA polymerase promoter and the autocatalytic hepatitis delta virus ribozyme of a transcription plasmid, pBR 322. Transfection of this plasmid, along with the expression plasmids encoding the N, P, M2-1, and L proteins of AMPV/CO, into cells stably expressing T7 RNA polymerase resulted in the recovery of infectious AMPV/CO. Characterization of the recombinant AMPV/CO showed that its growth properties in tissue culture were similar to those of the parental virus. The potential of AMPV/CO to serve as a viral vector was also assessed by generating another recombinant virus, rAMPV/CO-GFP, that expressed the enhanced green fluorescent protein (GFP) as a foreign protein. Interestingly, GFP-expressing AMPV and GFP-expressing human metapneumovirus (HMPV) could be recovered using the support plasmids of either virus, denoting that the genome promoters are conserved between the two metapneumoviruses and can be cross-recognized by the polymerase complex proteins of either virus. These results indicate a close functional relationship between AMPV/CO and HMPV.

Viruses ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 314 ◽  
Author(s):  
Gaobo Zhang ◽  
Jian Yang ◽  
Fujun Qin ◽  
Congrui Xu ◽  
Jia Wang ◽  
...  

Dendrolimus punctatus cypovirus (DpCPV), belonging to the genus Cypovirus within the family Reoviridae, is considered the most destructive pest of pine forests worldwide. DpCPV has a genome consisting of 10 linear double-stranded RNA segments. To establish a reverse genetics system, we cloned cDNAs encoding the 10 genomic segments of DpCPV into three reverse genetics vectors in which each segment was transcribed under the control of a T7 RNA polymerase promoter and terminator tagged with a hepatitis delta virus ribozyme sequence. We also constructed a vp80-knockout Autographa californica multiple nucleopolyhedrovirus bacmid to express a T7 RNA polymerase codon-optimized for Sf9 cells. Following transfection of Sf9 cells with the three vectors and the bacmid, occlusion bodies (OBs) with the typical morphology of cypovirus polyhedra were observed by optical microscopy. The rescue system was verified by incorporation of a HindIII restriction enzyme site null mutant of the 9th genomic segment. Furthermore, when we co-transfected Sf9 cells with the reverse genetics vectors, the bacmid, and an additional vector bearing an egfp gene flanked with the 5′ and 3′ untranslated regions of the 10th genomic segment, aggregated green fluorescence co-localizing with the OBs was observed. The rescued OBs were able to infect Spodopetra exigua larvae, although their infectivity was significantly lower than that of wild-type DpCPV. This reverse genetics system for DpCPV could be used to explore viral replication and pathogenesis and to facilitate the development of novel bio-insecticides and expression systems for exogenous proteins.


2001 ◽  
Vol 75 (4) ◽  
pp. 1643-1655 ◽  
Author(s):  
Ramon Flick ◽  
Ralf F. Pettersson

ABSTRACT We describe here the development of a reverse genetics system for the phlebovirus Uukuniemi virus, a member of theBunyaviridae family, by using RNA polymerase I (pol I)-mediated transcription. Complementary DNAs containing the coding sequence for either chloramphenicol acetyltransferase (CAT) or green fluorescent protein (GFP) (both in antisense orientation) were flanked by the 5′- and 3′-terminal untranslated regions of the Uukuniemi virus sense or complementary RNA derived from the medium-sized (M) RNA segment. This chimeric cDNA (pol I expression cassette) was cloned between the murine pol I promoter and terminator and the plasmid transfected into BHK-21 cells. When such cells were either superinfected with Uukuniemi virus or cotransfected with expression plasmids encoding the L (RNA polymerase), N (nucleoprotein), and NSs (nonstructural protein) viral proteins, strong CAT activity or GFP expression was observed. CAT activity was consistently stronger in cells expressing L plus N than following superinfection. No activity was seen without superinfection, nor was activity detected when either the L or N expression plasmid was omitted. Omitting NSs expression had no effect on CAT activity or GFP expression, indicating that this protein is not needed for viral RNA replication or transcription. CAT activity could be serially passaged to fresh cultures by transferring medium from CAT-expressing cells, indicating that recombinant virus containing the reporter construct had been produced. In summary, we demonstrate that the RNA pol I system, originally developed for influenza virus, which replicates in the nucleus, has strong potential for the development of an efficient reverse genetics system also for Bunyaviridae members, which replicate in the cytoplasm.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Fei Du ◽  
Yun-Qi Liu ◽  
Ying-Shuang Xu ◽  
Zi-Jia Li ◽  
Yu-Zhou Wang ◽  
...  

AbstractEscherichia coli is the most widely used bacterium in prokaryotic expression system for the production of recombinant proteins. In BL21 (DE3), the gene encoding the T7 RNA polymerase (T7 RNAP) is under control of the strong lacUV5 promoter (PlacUV5), which is leakier and more active than wild-type lac promoter (PlacWT) under certain growth conditions. These characteristics are not advantageous for the production of those recombinant proteins with toxic or growth-burdened. On the one hand, leakage expression of T7 RNAP leads to rapid production of target proteins under non-inducing period, which sucks resources away from cellular growth. Moreover, in non-inducing or inducing period, high expression of T7 RNAP production leads to the high-production of hard-to-express proteins, which may all lead to loss of the expression plasmid or the occurrence of mutations in the expressed gene. Therefore, more BL21 (DE3)-derived variant strains with rigorous expression and different expression level of T7 RNAP should be developed. Hence, we replaced PlacUV5 with other inducible promoters respectively, including arabinose promoter (ParaBAD), rhamnose promoter (PrhaBAD), tetracycline promoter (Ptet), in order to optimize the production of recombinant protein by regulating the transcription level and the leakage level of T7 RNAP. Compared with BL21 (DE3), the constructed engineered strains had higher sensitivity to inducers, among which rhamnose and tetracycline promoters had the lowest leakage ability. In the production of glucose dehydrogenase (GDH), a protein that causes host autolysis, the engineered strain BL21 (DE3::ara) exhibited higher biomass, cell survival rate and foreign protein expression level than that of BL21 (DE3). In addition, these engineered strains had been successfully applied to improve the production of membrane proteins, including E. coli cytosine transporter protein (CodB), the E. coli membrane protein insertase/foldase (YidC), and the E. coli F-ATPase subunit b (Ecb). The engineered strains constructed in this paper provided more host choices for the production of recombinant proteins.


2020 ◽  
Author(s):  
Asha A. Philip ◽  
John T. Patton

AbstractThe segmented 18.5-kB dsRNA genome of rotavirus expresses 6 structural and 6 nonstructural proteins. We investigated the possibility of using the recently-developed plasmid-based rotavirus reverse genetics (RG) system to generate recombinant viruses that express a separate foreign protein, in addition to the 12 viral proteins. To address this, we replaced the NSP3 open-reading-frame (ORF) of the segment 7 (pT7/NSP3) transcription vector used in the RG system with an ORF encoding NSP3 fused to a fluorescent reporter protein (i.e., UnaG, mRuby, mKate, or TagBFP). Inserted at the fusion junction was a teschovirus 2A-like self-cleaving element designed to direct the separate expression of NSP3 and the fluorescent protein. Recombinant rotaviruses made with the modified pT7/NSP3 vectors were well growing, generally genetically stable, and expressed NSP3 and a separate fluorescent protein detectable by live cell imaging. NSP3 made by the recombinant viruses was functional, inducing nuclear accumulation of cellular poly(A)-binding protein. Further modification of the NSP3 ORF showed that it was possible to generate recombinant viruses encoding 2 foreign proteins (mRuby and UnaG) in addition to NSP3. Our results demonstrate that, through modification of segment 7, the rotavirus genome can be increased in size to at least 19.8 kB and can be used to produce recombinant rotaviruses expressing a full complement of viral proteins and multiple foreign proteins. The generation of recombinant rotaviruses expressing fluorescent proteins will be valuable for the study of rotavirus replication and pathogenesis by live cell imagining and suggest that rotaviruses may prove useful as expression vectors.ImportanceRotaviruses are a major cause of severe gastroenteritis in infants and young children. Recently, a highly efficient reverse genetics system was developed that allows genetic manipulation of the rotavirus segmented double-stranded RNA genome. Using the reverse genetics system, we show that it is possible to modify one of the rotavirus genome segments (segment 7) such that virus gains the capacity to express a separate foreign protein, in addition to the full complement of viral proteins. Through this approach, we have generated wildtype-like rotaviruses that express various fluorescent reporter proteins, including UnaG (green), mRuby (far red), mKate (red), and TagBFP (blue). Such strains will be of value in probing rotavirus biology and pathogenesis by live-cell imagining techniques. Notably, our work indicates that the rotavirus genome is remarkably flexible and able to accommodate significant amounts of foreign RNA sequence, raising the possibility of using the virus as vaccine expression vector.


2007 ◽  
Vol 88 (4) ◽  
pp. 1281-1287 ◽  
Author(s):  
Emmie de Wit ◽  
Monique I. J. Spronken ◽  
Gaby Vervaet ◽  
Guus F. Rimmelzwaan ◽  
Albert D. M. E. Osterhaus ◽  
...  

The currently available reverse-genetics systems for Influenza A virus are all based on transcription of genomic RNA by RNA polymerase I, but the species specificity of this polymerase is a disadvantage. A reverse-genetics vector containing a T7 RNA polymerase promoter, hepatitis delta virus ribozyme sequence and T7 RNA polymerase terminator sequence has been developed. To achieve optimal expression in minigenome assays, it was determined that viral RNA should be inserted in this vector in the negative-sense orientation with two additional G residues downstream of the T7 RNA polymerase promoter. It was also shown that expression of the minigenome was more efficient when a T7 RNA polymerase with a nuclear-localization signal was used. By using this reverse-genetics system, recombinant influenza virus A/PR/8/34 was produced more efficiently than by using a similar polymerase I-based reverse-genetics system. Furthermore, influenza virus A/NL/219/03 could be rescued from 293T, MDCK and QT6 cells. Thus, a reverse-genetics system for the rescue of Influenza A virus has been developed, which will be useful for fundamental research and vaccine seed strain production in a variety of cell lines.


2001 ◽  
Vol 75 (24) ◽  
pp. 12359-12369 ◽  
Author(s):  
Rosa Casais ◽  
Volker Thiel ◽  
Stuart G. Siddell ◽  
David Cavanagh ◽  
Paul Britton

ABSTRACT Major advances in the study of the molecular biology of RNA viruses have resulted from the ability to generate and manipulate full-length genomic cDNAs of the viral genomes with the subsequent synthesis of infectious RNA for the generation of recombinant viruses. Coronaviruses have the largest RNA virus genomes and, together with genetic instability of some cDNA sequences in Escherichia coli, this has hampered the generation of a reverse-genetics system for this group of viruses. In this report, we describe the assembly of a full-length cDNA from the positive-sense genomic RNA of the avian coronavirus, infectious bronchitis virus (IBV), an important poultry pathogen. The IBV genomic cDNA was assembled immediately downstream of a T7 RNA polymerase promoter by in vitro ligation and cloned directly into the vaccinia virus genome. Infectious IBV RNA was generated in situ after the transfection of restricted recombinant vaccinia virus DNA into primary chick kidney cells previously infected with a recombinant fowlpox virus expressing T7 RNA polymerase. Recombinant IBV, containing two marker mutations, was recovered from the transfected cells. These results describe a reverse-genetics system for studying the molecular biology of IBV and establish a paradigm for generating genetically defined vaccines for IBV.


2014 ◽  
Vol 196 ◽  
pp. 36-39 ◽  
Author(s):  
Satoshi Komoto ◽  
Takahiro Kawagishi ◽  
Takeshi Kobayashi ◽  
Mine Ikizler ◽  
Jason Iskarpatyoti ◽  
...  

2017 ◽  
Vol 91 (11) ◽  
Author(s):  
Heather E. Eaton ◽  
Takeshi Kobayashi ◽  
Terence S. Dermody ◽  
Randal N. Johnston ◽  
Philippe H. Jais ◽  
...  

ABSTRACT Reoviruses, like many eukaryotic viruses, contain an inverted 7-methylguanosine (m7G) cap linked to the 5′ nucleotide of mRNA. The traditional functions of capping are to promote mRNA stability, protein translation, and concealment from cellular proteins that recognize foreign RNA. To address the role of mRNA capping during reovirus replication, we assessed the benefits of adding the African swine fever virus NP868R capping enzyme during reovirus rescue. C3P3, a fusion protein containing T7 RNA polymerase and NP868R, was found to increase protein expression 5- to 10-fold compared to T7 RNA polymerase alone while enhancing reovirus rescue from the current reverse genetics system by 100-fold. Surprisingly, RNA stability was not increased by C3P3, suggesting a direct effect on protein translation. A time course analysis revealed that C3P3 increased protein synthesis within the first 2 days of a reverse genetics transfection. This analysis also revealed that C3P3 enhanced processing of outer capsid μ1 protein to μ1C, a previously described hallmark of reovirus assembly. Finally, to determine the rate of infectious-RNA incorporation into new virions, we developed a new recombinant reovirus S1 gene that expressed the fluorescent protein UnaG. Following transfection of cells with UnaG and infection with wild-type virus, passage of UnaG through progeny was significantly enhanced by C3P3. These data suggest that capping provides nontraditional functions to reovirus, such as promoting assembly and infectious-RNA incorporation. IMPORTANCE Our findings expand our understanding of how viruses utilize capping, suggesting that capping provides nontraditional functions to reovirus, such as promoting assembly and infectious-RNA incorporation, in addition to enhancing protein translation. Beyond providing mechanistic insight into reovirus replication, our findings also show that reovirus reverse genetics rescue is enhanced 100-fold by the NP868R capping enzyme. Since reovirus shows promise as a cancer therapy, efficient reovirus reverse genetics rescue will accelerate production of recombinant reoviruses as candidates to enhance therapeutic potency. NP868R-assisted reovirus rescue will also expedite production of recombinant reovirus for mechanistic insights into reovirus protein function and structure.


2004 ◽  
Vol 78 (15) ◽  
pp. 8264-8270 ◽  
Author(s):  
Sander Herfst ◽  
Miranda de Graaf ◽  
Jeanne H. Schickli ◽  
Roderick S. Tang ◽  
Jasmine Kaur ◽  
...  

ABSTRACT Human metapneumovirus (hMPV) is a newly discovered pathogen associated with respiratory tract illness, primarily in young children, immunocompromised individuals, and the elderly. The genomic sequence of the prototype hMPV isolate NL/1/00 without the terminal leader and trailer sequences has been reported previously. Here we describe the leader and trailer sequences of two hMPV isolates, NL/1/00 and NL/1/99, representing the two main genetic lineages of hMPV. Minigenome constructs in which the green fluorescent protein or chloramphenicol acetyltransferase genes are flanked by the viral genomic ends derived from both hMPV lineages and transcribed using a T7 RNA polymerase promoter-terminator cassette were generated. Cotransfection of minigenome constructs with plasmids expressing the polymerase complex components L, P, N, and M2.1 in 293T or baby hamster kidney cells resulted in expression of the reporter genes. When the minigenome was replaced by a sense or antisense full-length cDNA copy of the NL/1/00 or NL/1/99 viral genomes, recombinant virus was recovered from transfected cells. Viral titers up to 107.2 and 105.7 50% tissue culture infective dose/ml were achieved with the sense and antisense plasmids, respectively. The recombinant viruses replicated with kinetics similar to those of the parental viruses in Vero cells. This reverse genetics system provides an important new tool for applied and fundamental research.


2007 ◽  
Vol 88 (8) ◽  
pp. 2091-2100 ◽  
Author(s):  
Yasmin Chaudhry ◽  
Michael A. Skinner ◽  
Ian G. Goodfellow

Despite the significant disease burden caused by human norovirus infection, an efficient tissue-culture system for these viruses remains elusive. Murine norovirus (MNV) is an ideal surrogate for the study of norovirus biology, as the virus replicates efficiently in tissue culture and a low-cost animal model is readily available. In this report, a reverse-genetics system for MNV is described, using a fowlpox virus (FWPV) recombinant expressing T7 RNA polymerase to recover genetically defined MNV in tissue culture for the first time. These studies demonstrated that approaches that have proved successful for other members of the family Caliciviridae failed to lead to recovery of MNV. This was due to our observation that vaccinia virus infection had a negative effect on MNV replication. In contrast, FWPV infection had no deleterious effect and allowed the recovery of infectious MNV from cells previously transfected with MNV cDNA constructs. These studies also indicated that the nature of the 3′-terminal nucleotide is critical for efficient virus recovery and that inclusion of a hepatitis delta virus ribozyme at the 3′ end can increase the efficiency with which virus is recovered. This system now allows the recovery of genetically defined noroviruses and will facilitate the analysis of the effects of genetic variation on norovirus pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document