scholarly journals Interspecies Transmission of Simian Foamy Virus in a Natural Predator-Prey System

2008 ◽  
Vol 82 (15) ◽  
pp. 7741-7744 ◽  
Author(s):  
Fabian H. Leendertz ◽  
Florian Zirkel ◽  
Emmanuel Couacy-Hymann ◽  
Heinz Ellerbrok ◽  
Vladimir A. Morozov ◽  
...  

ABSTRACT Simian foamy viruses (SFV) are ancient retroviruses of primates and have coevolved with their host species for as many as 30 million years. Although humans are not naturally infected with foamy virus, infection is occasionally acquired through interspecies transmission from nonhuman primates. We show that interspecies transmissions occur in a natural hunter-prey system, i.e., between wild chimpanzees and colobus monkeys, both of which harbor their own species-specific strains of SFV. Chimpanzees infected with chimpanzee SFV strains were shown to be coinfected with SFV from colobus monkeys, indicating that apes are susceptible to SFV superinfection, including highly divergent strains from other primate species.

Viruses ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 902 ◽  
Author(s):  
Shannon M. Murray ◽  
Maxine L. Linial

Foamy viruses (FVs), also known as spumaretroviruses, are complex retroviruses that are seemingly nonpathogenic in natural hosts. In natural hosts, which include felines, bovines, and nonhuman primates (NHPs), a large percentage of adults are infected with FVs. For this reason, the effect of FVs on infections with other viruses (co-infections) cannot be easily studied in natural populations. Most of what is known about interactions between FVs and other viruses is based on studies of NHPs in artificial settings such as research facilities. In these settings, there is some indication that FVs can exacerbate infections with lentiviruses such as simian immunodeficiency virus (SIV). Nonhuman primate (NHP) simian FVs (SFVs) have been shown to infect people without any apparent pathogenicity. Humans zoonotically infected with simian foamy virus (SFV) are often co-infected with other viruses. Thus, it is important to know whether SFV co-infections affect human disease.


2003 ◽  
Vol 77 (15) ◽  
pp. 8584-8587 ◽  
Author(s):  
Ernst J. Verschoor ◽  
Susan Langenhuijzen ◽  
Saskia van den Engel ◽  
Henk Niphuis ◽  
Kristin S. Warren ◽  
...  

ABSTRACT The full-length proviral genome of a foamy virus infecting a Bornean orangutan was amplified, and its sequence was analyzed. Although the genome showed a clear resemblance to other published foamy virus genomes from apes and monkeys, phylogenetic analysis revealed that simian foamy virus SFVora was evolutionarily equidistant from foamy viruses from other hominoids and from those from Old World monkeys. This finding suggests an independent evolution within its host over a long period of time.


2010 ◽  
Vol 84 (8) ◽  
pp. 4095-4099 ◽  
Author(s):  
Beatriz Pacheco ◽  
Andrés Finzi ◽  
Kathleen McGee-Estrada ◽  
Joseph Sodroski

ABSTRACT Foamy virus evolution closely parallels that of the host species, indicating virus-host coadaptation. We studied simian foamy viruses (SFVs) from common marmosets, spider monkeys, and squirrel monkeys, New World monkey (NWM) species that share geographic ranges. The TRIM5α protein from each of these NWM species inhibited the replication of at least one of the SFVs associated with the other two species but did not affect the replication of its own SFV. Thus, TRIM5α has potentially shaped the evolution of SFVs in NWM hosts. Conversely, SFVs may have influenced the evolution of TRIM5 variants in New World primates.


2016 ◽  
Vol 4 (6) ◽  
Author(s):  
Koji Sakai ◽  
Yasushi Ami ◽  
Yuriko Suzaki ◽  
Tetsuro Matano

We report here the first complete proviral genome sequence (DDBJ/ENA/GenBank accession no. LC094267) of a simian foamy virus, SFVmfa/Cy5061, isolated from a cynomolgus macaque ( Macaca fascicularis ). This proviral genome consists of 12,965 nucleotides and has five open reading frames, gag , pol , env , tas , and bet , as with other foamy viruses.


2010 ◽  
Vol 84 (15) ◽  
pp. 7427-7436 ◽  
Author(s):  
Siv Aina J. Leendertz ◽  
Sandra Junglen ◽  
Claudia Hedemann ◽  
Adeelia Goffe ◽  
Sebastien Calvignac ◽  
...  

ABSTRACT Simian retroviruses are precursors of all human retroviral pathogens. However, little is known about the prevalence and coinfection rates or the genetic diversity of major retroviruses—simian immunodeficiency virus (SIV), simian T-cell lymphotropic virus type 1 (STLV-1), and simian foamy virus (SFV)—in wild populations of nonhuman primates. Such information would contribute to the understanding of the natural history of retroviruses in various host species. Here, we estimate these parameters for wild West African red colobus monkeys (Piliocolobus badius badius) in the Taï National Park, Côte d'Ivoire. We collected samples from a total of 54 red colobus monkeys; samples consisted of blood and/or internal organs from 22 monkeys and additionally muscle and other tissue samples from another 32 monkeys. PCR analyses revealed a high prevalence of SIV, STLV-1, and SFV in this population, with rates of 82%, 50%, and 86%, respectively. Forty-five percent of the monkeys were coinfected with all three viruses while another 32% were coinfected with SIV in combination with either STLV or SFV. As expected, phylogenetic analyses showed a host-specific pattern for SIV and SFV strains. In contrast, STLV-1 strains appeared to be distributed in genetically distinct and distant clades, which are unique to the Taï forest and include strains previously described from wild chimpanzees in the same area. The high prevalence of all three retroviral infections in P. b. badius represents a source of infection to chimpanzees and possibly to humans, who hunt them.


Viruses ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 605 ◽  
Author(s):  
Anupama Shankar ◽  
Samuel D. Sibley ◽  
Tony L. Goldberg ◽  
William M. Switzer

Foamy viruses (FVs) are complex retroviruses present in many mammals, including nonhuman primates, where they are called simian foamy viruses (SFVs). SFVs can zoonotically infect humans, but very few complete SFV genomes are available, hampering the design of diagnostic assays. Gibbons are lesser apes widespread across Southeast Asia that can be infected with SFV, but only two partial SFV sequences are currently available. We used a metagenomics approach with next-generation sequencing of nucleic acid extracted from the cell culture of a blood specimen from a lesser ape, the pileated gibbon (Hylobates pileatus), to obtain the complete SFVhpi_SAM106 genome. We used Bayesian analysis to co-infer phylogenetic relationships and divergence dates. SFVhpi_SAM106 is ancestral to other ape SFVs with a divergence date of ~20.6 million years ago, reflecting ancient co-evolution of the host and SFVhpi_SAM106. Analysis of the complete SFVhpi_SAM106 genome shows that it has the same genetic architecture as other SFVs but has the longest recorded genome (13,885-nt) due to a longer long terminal repeat region (2,071 bp). The complete sequence of the SFVhpi_SAM106 genome fills an important knowledge gap in SFV genetics and will facilitate future studies of FV infection, transmission, and evolutionary history.


2015 ◽  
Vol 89 (14) ◽  
pp. 7414-7416 ◽  
Author(s):  
Karen L. Craig ◽  
M. Kamrul Hasan ◽  
Dana L. Jackson ◽  
Gregory A. Engel ◽  
Khanh Soliven ◽  
...  

Simian foamy viruses (SVF) are ubiquitous in nonhuman primates (NHP). SFV can be zoonotically transmitted to humans who either work with or live commensally with NHP. We analyzed the blood of 45 Bangladeshi performing monkey owners (an ethnic group called the Bedey) for SFV infection. Surprisingly, a PCR assay failed to detect SFV infection in any of these participants. This is in contrast to our previously reported infection rate of about 5% among Bangladeshi villagers.


1999 ◽  
Vol 73 (5) ◽  
pp. 4498-4501 ◽  
Author(s):  
Min Wu ◽  
Ayalew Mergia

ABSTRACT Foamy viruses are nonpathogenic retroviruses that offer several unique opportunities for gene transfer in various cell types from different species. We have previously demonstrated the utility of simian foamy virus type 1 (SFV-1) as a vector system by transient expression assay (M. Wu et al., J. Virol. 72:3451–3454, 1998). In this report, we describe the first stable packaging cell lines for foamy virus vectors based on SFV-1. We developed two packaging cell lines in which the helper DNA is placed under the control of either a constitutive cytomegalovirus (CMV) immediate-early gene or inducible tetracycline promoter for expression. Although the constitutive packaging expressing cell line had a higher copy number of packaging DNA, the inducible packaging cell line produced four times more vector particles. This result suggested that the structural gene products in the constitutively expressing packaging cell line were expressed at a level that is not toxic to the cells, and thus vector production was reduced. The SFV-1 vector in the presence of vesicular stomatitis virus envelope protein G (VSV-G) produced an insignificant level of transduction, indicating that foamy viruses could not be pseudotyped with VSV-G to generate high-titer vectors. The availability of stable packaging cell lines represents a step toward the use of an SFV-1 vector delivery system that will allow scaled-up production of vector stocks for gene therapy.


2004 ◽  
Vol 85 (11) ◽  
pp. 3313-3317 ◽  
Author(s):  
Sara Calattini ◽  
Eric Nerrienet ◽  
Philippe Mauclère ◽  
Marie-Claude Georges-Courbot ◽  
Ali Saïb ◽  
...  

A survey for the presence of simian foamy retroviruses (SFVs) was performed in 44 wild-caught apes and monkeys, including 27 gorillas, 11 mandrills and six drills, originating from south Cameroon or Gabon. Combined serological and/or nested-PCR assays indicated SFV infection among five Gorilla gorilla gorilla, seven Mandrillus sphinx and two Mandrillus leucophaeus. Sequences of a 425 bp fragment of the integrase gene were obtained for 11 animals. Phylogenetic studies indicated that strains from gorillas, mandrills and drills each formed a highly supported phylogenetic clade with, moreover, the existence of two different gorilla SFVs. This study demonstrates for the first time that these animals are naturally infected with specific SFVs. In the context of simian-to-human interspecies transmission, the results confirm that such viruses can also infect humans, as the SFVs identified in wild-caught animals were the same as those recently reported as infecting hunters living in the same geographical areas.


Sign in / Sign up

Export Citation Format

Share Document