Establishment of Full-length cDNA Clones and an Efficient Oral Infection Model for Feline Coronavirus in Cats

2021 ◽  
Author(s):  
Gang Wang ◽  
Guangli Hu ◽  
Rui Liang ◽  
Jiale Shi ◽  
Xiuxiu Qiu ◽  
...  

Feline infectious peritonitis virus (FIPV) is the etiologic agent of feline infectious peritonitis (FIP) and causes fatal disease in cats of almost all ages. Currently, there are no clinically approved drugs or effective vaccines for FIP. Furthermore, the pathogenesis of FIP is still not fully understood. There is an urgent need for an effective infection model of feline infectious peritonitis induced by FIPV. Here, we constructed a field type I FIPV full-length cDNA clone, pBAC-QS, corresponding to the isolated FIPV QS. By replacing the FIPV QS spike gene with the commercially available type II FIPV 79-1146 (79-1146_CA) spike gene, we established and rescued a recombinant virus, designated rQS-79. Moreover, we constructed 79-1146_CA infectious full-length cDNA pBAC-79-1146_CA, corresponding to recombinant FCoV 79-1146_CA (r79-1146_CA). In animal experiments with one- to two-year-old adult cats orally infected with the recombinant virus, rQS-79 induced typical FIP signs and 100% mortality. In contrast to cats infected with rQS-79, cats infected with 79-1146_CA did not show obvious signs. Furthermore, by rechallenging rQS-79 in surviving cats previously infected with 79-1146_CA, we found that there was no protection against rQS-79 with different titers of neutralizing antibodies. However, high titers of neutralizing antibodies may help prolong the cat survival time. Overall, we report the first reverse genetics of virulent recombinant FCoV (causing 100% mortality in adult cats) and attenuated FCoV (causing no mortality in adult cats), which will be powerful tools to study the pathogenesis, antiviral drugs and vaccines for FCoV. Importance Tissue- or cell culture-adapted feline infectious peritonitis virus (FIPV) usually loses pathogenicity. To develop a highly virulent FIPV, we constructed a field isolate type I FIPV full-length clone with the spike gene replaced by the 79-1146 spike gene, corresponding to a virus named rQS-79, which induces high mortality in adult cats. rQS-79 represents the first described reverse genetics system for highly pathogenic FCoV. By further constructing the cell culture-adapted FCoV 79-1146_CA, we obtained infectious clones of virulent and attenuated FCoV. By in vitro and in vivo experiments, we established a model that can serve to study the pathogenic mechanisms of FIPV. Importantly, the wild-type FIPV replicase skeleton of serotype I will greatly facilitate the screening of antiviral drugs, both in vivo and in vitro.

Pathogens ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 67 ◽  
Author(s):  
Tomoyoshi Doki ◽  
Tomoyo Tarusawa ◽  
Tsutomu Hohdatsu ◽  
Tomomi Takano

Background: The cationic amphiphilic drug U18666A inhibits the proliferation of type I FIPV in vitro. In this study, we evaluated the in vivo antiviral effects of U18666A by administering it to SPF cats challenged with type I FIPV. Methods: Ten SPF cats were randomly assigned to two experimental groups. FIPV KU-2 were inoculated intraperitoneally to cats. The control group was administered PBS, and the U18666A-treated group was administered U18666A subcutaneously at 2.5 mg/kg on day 0, and 1.25 mg/kg on days 2 and 4 after viral inoculation. Results: Two of the five control cats administered PBS alone developed FIP. Four of the five cats administered U18666A developed no signs of FIP. One cat that temporarily developed fever, had no other clinical symptoms, and no gross lesion was noted on an autopsy after the end of the experiment. The FIPV gene was detected intermittently in feces and saliva regardless of the development of FIP or administration of U18666A. Conclusions: When U18666A was administered to cats experimentally infected with type I FIPV, the development of FIP might be suppressed compared with the control group. However, the number of animals with FIP is too low to establish anti-viral effect of U18666A in cats.


2014 ◽  
Vol 95 (2) ◽  
pp. 393-402 ◽  
Author(s):  
Annelike Dedeurwaerder ◽  
Dominique A. J. Olyslaegers ◽  
Lowiese M. B. Desmarets ◽  
Inge D. M. Roukaerts ◽  
Sebastiaan Theuns ◽  
...  

The type I IFN-mediated immune response is the first line of antiviral defence. Coronaviruses, like many other viruses, have evolved mechanisms to evade this innate response, ensuring their survival. Several coronavirus accessory genes play a central role in these pathways, but for feline coronaviruses this has never to our knowledge been studied. As it has been demonstrated previously that ORF7 is essential for efficient replication in vitro and virulence in vivo of feline infectious peritonitis virus (FIPV), the role of this ORF in the evasion of the IFN-α antiviral response was investigated. Deletion of ORF7 from FIPV strain 79-1146 (FIPV-Δ7) rendered the virus more susceptible to IFN-α treatment. Given that ORF7 encodes two proteins, 7a and 7b, it was further explored which of these proteins is active in this mechanism. Providing 7a protein in trans rescued the mutant FIPV-Δ7 from IFN sensitivity, which was not achieved by addition of 7b protein. Nevertheless, addition of protein 7a to FIPV-Δ3Δ7, a FIPV mutant deleted in both ORF3 and ORF7, could no longer increase the replication capacity of this mutant in the presence of IFN. These results indicate that FIPV 7a protein is a type I IFN antagonist and protects the virus from the antiviral state induced by IFN, but it needs the presence of ORF3-encoded proteins to exert its antagonistic function.


2010 ◽  
Vol 84 (16) ◽  
pp. 8262-8274 ◽  
Author(s):  
Cheri A. Koetzner ◽  
Lili Kuo ◽  
Scott J. Goebel ◽  
Amy B. Dean ◽  
Monica M. Parker ◽  
...  

ABSTRACT The type I interferon (IFN) response plays an essential role in the control of in vivo infection by the coronavirus mouse hepatitis virus (MHV). However, in vitro, most strains of MHV are largely resistant to the action of this cytokine, suggesting that MHV encodes one or more functions that antagonize or evade the IFN system. A particular strain of MHV, MHV-S, exhibited orders-of-magnitude higher sensitivity to IFN than prototype strain MHV-A59. Through construction of interstrain chimeric recombinants, the basis for the enhanced IFN sensitivity of MHV-S was found to map entirely to the region downstream of the spike gene, at the 3′ end of the genome. Sequence analysis revealed that the major difference between the two strains in this region is the absence of gene 5a from MHV-S. Creation of a gene 5a knockout mutant of MHV-A59 demonstrated that a major component of IFN resistance maps to gene 5a. Conversely, insertion of gene 5a, or its homologs from related group 2 coronaviruses, at an upstream genomic position in an MHV-A59/S chimera restored IFN resistance. This is the first demonstration of a coronavirus gene product that can protect that same virus from the antiviral state induced by IFN. Neither protein kinase R, which phosphorylates eukaryotic initiation factor 2, nor oligoadenylate synthetase, which activates RNase L, was differentially activated in IFN-treated cells infected with MHV-A59 or MHV-S. Thus, the major IFN-induced antiviral activities that are specifically inhibited by MHV, and possibly by other coronaviruses, remain to be identified.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 469-469
Author(s):  
Alain Chion ◽  
Jamie O'Sullivan ◽  
Gudmundur Bergsson ◽  
Sean Keyes ◽  
Orla Rawley ◽  
...  

Abstract Enhanced plasma clearance of von Willebrand factor (VWF) plays an important role in the etiology of both type 1 and type 2 VWD. Nevertheless, although significant progress has been achieved in understanding the structure and functional properties of VWF, the mechanism(s) responsible for modulating VWF clearance from the plasma remain poorly understood. Accumulating recent data suggests that hepatic and splenic macrophages play key roles in modulating VWF clearance. A number of putative macrophage receptors for VWF have been also been described, including LRP1, β2-integrins and Siglec-5. In addition, it is well recognised that variation in VWF glycan expression significantly influences its clearance rate. In particular, terminal ABO(H) blood group determinants which are predominantly expressed on the N-linked glycans of human VWF significantly modulate its rate of clearance. Critically however, the molecular mechanisms through which specific macrophage receptors interact with particular regions of the complex VWF glycoprotein have not been defined. To investigate the role of VWF glycans and specific VWF domains in regulating VWF clearance, we expressed and purified a series of recombinant VWF variants and truncations with/without specific glycan sites. In addition, VWF glycosylation was modified using specific exoglycosidase digestions. Subsequently, recombinant VWF variants and glycoforms thereof were injected into VWF-/-mice, and plasma VWF clearance rates determined by ELISA. VWF-macrophage interactions were also quantified in vitro using phorbol ester-differentiated monocytic THP-1 cells, and primary human monocytes, in a High Content Analysis Imaging system. In keeping with previous reports, we observed that clearance of a truncated VWFA1A2A3 fragment in VWF-/-mice was very similar to that of full-length wild type (WT-) VWF (VWFA1A2A3; t1/2 = 6.3 min versus rWT-VWF; t1/2 = 7.9 min). Furthermore, chemical depletion of macrophages using clodronate liposomes administration significantly inhibited A1A2A3 clearance in vivo (1.7-fold at 10 min time point) to a similar extent to that observed with full length VWF. In vitro binding experiments confirmed that A1A2A3 bound to differentiated THP-1 cells in a dose- and time- dependent manner. Interestingly, this binding was significantly enhanced in the presence of ristocetin. Cumulatively, these data demonstrate that the A1A2A3 domains of VWF contain a critical receptor-binding site for macrophage-mediated clearance. Interestingly, we observed that the half-life of infused human plasma-derived VWF and recombinant VWF expressed in HEK293T cells in VWF-/- mice were significantly different. Furthermore, treatment with PNGase F to completely remove N-linked glycan structures markedly enhanced the clearance of full length VWF (t1/2 2.1 min; p<0.05). Collectively, these findings highlight the essential roles played by N-glycans in regulating VWF survival. Two N-linked glycan sites are located within A1A2A3 at N1515 and N1574 respectively. Importantly, we found that PNGase digestion of A1A2A3 resulted in markedly enhanced macrophage binding in vitro. Consequently we hypothesized that the two N-glycans located within the A2 domain might be important in regulating VWF clearance by macrophages. Targeted disruption of these individual N-glycan sites by site-directed mutagenesis (A1A2A3-N1515Q and A1A2A3-N1574Q respectively) resulted in significantly enhanced macrophage binding in vitro compared to wild type A1A2A3. Furthermore, following tail vein infusion in VWF-/-mice, full length VWFN1515Q and VWFN1574Q both demonstrated markedly reduced half-lives compared to wild type VWF (VWFN1515Q; t1/2 = 3.7 min, VWFN1574Q; t1/2 = 5.5 min). Finally, introduction of the N1515Q point mutation into truncated A1A2A3 also served to significantly enhance plasma clearance, (A1A2A3N1515Q-VWF; t1/2 = 3.1 min versus A1A2A3-VWF; t1/2 = 6.3 min). In conclusion, our novel data identify a crucial role of the VWF A domains in regulating macrophage-mediated VWF clearance. In addition, we further demonstrate that the N-linked glycans structures located at N1515 and N1574 within the A2 domain play specific roles in protecting VWF against in vivo clearance by macrophages. Given the important role played by enhanced VWF clearance in the etiology of type I VWD, these findings are of direct clinical importance. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
pp. 40-50
Author(s):  
A. Nikitina

Analysis of literature data presented in search engines — Elibrary, PubMed, Cochrane — concerning the risk of developing type I allergic reactions in patients with blood diseases is presented. It is shown that the most common cause of type I allergic reactions is drugs included in the treatment regimens of this category of patients. The article presents statistics on the increase in the number of drug allergies leading to cases of anaphylactic shock in patients with blood diseases. Modern methods for the diagnosis of type I allergic reactions in vivo and in vitro are considered.


2021 ◽  
Vol 8 (3) ◽  
pp. 39
Author(s):  
Britani N. Blackstone ◽  
Summer C. Gallentine ◽  
Heather M. Powell

Collagen is a key component of the extracellular matrix (ECM) in organs and tissues throughout the body and is used for many tissue engineering applications. Electrospinning of collagen can produce scaffolds in a wide variety of shapes, fiber diameters and porosities to match that of the native ECM. This systematic review aims to pool data from available manuscripts on electrospun collagen and tissue engineering to provide insight into the connection between source material, solvent, crosslinking method and functional outcomes. D-banding was most often observed in electrospun collagen formed using collagen type I isolated from calfskin, often isolated within the laboratory, with short solution solubilization times. All physical and chemical methods of crosslinking utilized imparted resistance to degradation and increased strength. Cytotoxicity was observed at high concentrations of crosslinking agents and when abbreviated rinsing protocols were utilized. Collagen and collagen-based scaffolds were capable of forming engineered tissues in vitro and in vivo with high similarity to the native structures.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Meilin Chan ◽  
Licun Wu ◽  
Zhihong Yun ◽  
Trevor D. McKee ◽  
Michael Cabanero ◽  
...  

AbstractMalignant pleural mesothelioma (MPM) is an aggressive neoplasm originating from the pleura. Non-epithelioid (biphasic and sarcomatoid) MPM are particularly resistant to therapy. We investigated the role of the GITR-GITRL pathway in mediating the resistance to therapy. We found that GITR and GITRL expressions were higher in the sarcomatoid cell line (CRL5946) than in non-sarcomatoid cell lines (CRL5915 and CRL5820), and that cisplatin and Cs-137 irradiation increased GITR and GITRL expressions on tumor cells. Transcriptome analysis demonstrated that the GITR-GITRL pathway was promoting tumor growth and inhibiting cell apoptosis. Furthermore, GITR+ and GITRL+ cells demonstrated increased spheroid formation in vitro and in vivo. Using patient derived xenografts (PDXs), we demonstrated that anti-GITR neutralizing antibodies attenuated tumor growth in sarcomatoid PDX mice. Tumor immunostaining demonstrated higher levels of GITR and GITRL expressions in non-epithelioid compared to epithelioid tumors. Among 73 patients uniformly treated with accelerated radiation therapy followed by surgery, the intensity of GITR expression after radiation negatively correlated with survival in non-epithelioid MPM patients. In conclusion, the GITR-GITRL pathway is an important mechanism of autocrine proliferation in sarcomatoid mesothelioma, associated with tumor stemness and resistance to therapy. Blocking the GITR-GITRL pathway could be a new therapeutic target for non-epithelioid mesothelioma.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 439
Author(s):  
Christopher G. Bunick ◽  
Jonette Keri ◽  
S. Ken Tanaka ◽  
Nika Furey ◽  
Giovanni Damiani ◽  
...  

Prolonged broad-spectrum antibiotic use is more likely to induce bacterial resistance and dysbiosis of skin and gut microflora. First and second-generation tetracycline-class antibiotics have similar broad-spectrum antibacterial activity. Targeted tetracycline-class antibiotics are needed to limit antimicrobial resistance and improve patient outcomes. Sarecycline is a narrow-spectrum, third-generation tetracycline-class antibiotic Food and Drug Administration (FDA)-approved for treating moderate-to-severe acne. In vitro studies demonstrated activity against clinically relevant Gram-positive bacteria but reduced activity against Gram-negative bacteria. Recent studies have provided insight into how the structure of sarecycline, with a unique C7 moiety, interacts with bacterial ribosomes to block translation and prevent antibiotic resistance. Sarecycline reduces Staphylococcus aureus DNA and protein synthesis with limited effects on RNA, lipid, and bacterial wall synthesis. In agreement with in vitro data, sarecycline demonstrated narrower-spectrum in vivo activity in murine models of infection, exhibiting activity against S. aureus, but reduced efficacy against Escherichia coli compared to doxycycline and minocycline. In a murine neutropenic thigh wound infection model, sarecycline was as effective as doxycycline against S. aureus. The anti-inflammatory activity of sarecycline was comparable to doxycycline and minocycline in a rat paw edema model. Here, we review the antibacterial mechanisms of sarecycline and report results of in vivo studies of infection and inflammation.


Sign in / Sign up

Export Citation Format

Share Document