scholarly journals The Concerted Action of Two B3-Like Prophage Genes Excludes Superinfecting Bacteriophages by Blocking DNA Entry into Pseudomonas aeruginosa

2020 ◽  
Vol 94 (15) ◽  
Author(s):  
Marco Antonio Carballo-Ontiveros ◽  
Adrián Cazares ◽  
Pablo Vinuesa ◽  
Luis Kameyama ◽  
Gabriel Guarneros

ABSTRACT In this study, we describe seven vegetative phage genomes homologous to the historic phage B3 that infect Pseudomonas aeruginosa. Like other phage groups, the B3-like group contains conserved (core) and variable (accessory) open reading frames (ORFs) grouped at fixed regions in their genomes; however, in either case, many ORFs remain without assigned functions. We constructed lysogens of the seven B3-like phages in strain Ps33 of P. aeruginosa, a novel clinical isolate, and assayed the exclusion phenotype against a variety of temperate and virulent superinfecting phages. In addition to the classic exclusion conferred by the phage immunity repressor, the phenotype observed in B3-like lysogens suggested the presence of other exclusion genes. We set out to identify the genes responsible for this exclusion phenotype. Phage Ps56 was chosen as the study subject since it excluded numerous temperate and virulent phages. Restriction of the Ps56 genome, cloning of several fragments, and resection of the fragments that retained the exclusion phenotype allowed us to identify two core ORFs, so far without any assigned function, as responsible for a type of exclusion. Neither gene expressed separately from plasmids showed activity, but the concurrent expression of both ORFs is needed for exclusion. Our data suggest that phage adsorption occurs but that phage genome translocation to the host’s cytoplasm is defective. To our knowledge, this is the first report on this type of exclusion mediated by a prophage in P. aeruginosa. IMPORTANCE Pseudomonas aeruginosa is a Gram-negative bacterium frequently isolated from infected immunocompromised patients, and the strains are resistant to a broad spectrum of antibiotics. Recently, the use of phages has been proposed as an alternative therapy against multidrug-resistant bacteria. However, this approach may present various hurdles. This work addresses the problem that pathogenic bacteria may be lysogenized by phages carrying genes encoding resistance against secondary infections, such as those used in phage therapy. Discovering phage genes that exclude superinfecting phages not only assigns novel functions to orphan genes in databases but also provides insight into selection of the proper phages for use in phage therapy.

Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 877
Author(s):  
Ana Mafalda Pinto ◽  
Alberta Faustino ◽  
Lorenzo M. Pastrana ◽  
Manuel Bañobre-López ◽  
Sanna Sillankorva

Pseudomonas aeruginosa is responsible for nosocomial and chronic infections in healthcare settings. The major challenge in treating P. aeruginosa-related diseases is its remarkable capacity for antibiotic resistance development. Bacteriophage (phage) therapy is regarded as a possible alternative that has, for years, attracted attention for fighting multidrug-resistant infections. In this work, we characterized five phages showing different lytic spectrums towards clinical isolates. Two of these phages were isolated from the Russian Microgen Sextaphage formulation and belong to the Phikmvviruses, while three Pbunaviruses were isolated from sewage. Different phage formulations for the treatment of P. aeruginosa PAO1 resulted in diversified time–kill outcomes. The best result was obtained with a formulation with all phages, prompting a lower frequency of resistant variants and considerable alterations in cell motility, resulting in a loss of 73.7% in swimming motility and a 79% change in swarming motility. These alterations diminished the virulence of the phage-resisting phenotypes but promoted their growth since most became insensitive to a single or even all phages. However, not all combinations drove to enhanced cell killings due to the competition and loss of receptors. This study highlights that more caution is needed when developing cocktail formulations to maximize phage therapy efficacy. Selecting phages for formulations should consider the emergence of phage-resistant bacteria and whether the formulations are intended for short-term or extended antibacterial application.


2017 ◽  
Vol 63 (11) ◽  
pp. 865-879 ◽  
Author(s):  
Ayman El-Shibiny ◽  
Salma El-Sahhar

Since their discovery in 1915, bacteriophages have been used to treat bacterial infections in animals and humans because of their unique ability to infect their specific bacterial hosts without affecting other bacterial populations. The research carried out in this field throughout the 20th century, largely in Georgia, part of USSR and Poland, led to the establishment of phage therapy protocols. However, the discovery of penicillin and sulfonamide antibiotics in the Western World during the 1930s was a setback in the advancement of phage therapy. The misuse of antibiotics has reduced their efficacy in controlling pathogens and has led to an increase in the number of antibiotic-resistant bacteria. As an alternative to antibiotics, bacteriophages have become a topic of interest with the emergence of multidrug-resistant bacteria, which are a threat to public health. Recent studies have indicated that bacteriophages can be used indirectly to detect pathogenic bacteria or directly as biocontrol agents. Moreover, they can be used to develop new molecules for clinical applications, vaccine production, drug design, and in the nanomedicine field via phage display.


2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Helio S. Sader ◽  
Mariana Castanheira ◽  
Dee Shortridge ◽  
Rodrigo E. Mendes ◽  
Robert K. Flamm

ABSTRACT The in vitro activity of ceftazidime-avibactam and many comparator agents was determined against various resistant subsets of organisms selected among 36,380 Enterobacteriaceae and 7,868 Pseudomonas aeruginosa isolates. The isolates were consecutively collected from 94 U.S. hospitals, and all isolates were tested for susceptibility by reference broth microdilution methods in a central monitoring laboratory (JMI Laboratories). Enterobacteriaceae isolates resistant to carbapenems (CRE) and/or ceftazidime-avibactam (MIC ≥ 16 μg/ml) were evaluated for the presence of genes encoding extended-spectrum β-lactamases and carbapenemases. Ceftazidime-avibactam inhibited >99.9% of all Enterobacteriaceae at the susceptible breakpoint of ≤8 μg/ml and was active against multidrug-resistant (MDR; n = 2,953; MIC50/90, 0.25/1 μg/ml; 99.2% susceptible), extensively drug-resistant (XDR; n = 448; MIC50/90, 0.5/2 μg/ml; 97.8% susceptible), and CRE (n = 513; MIC50/90, 0.5/2 μg/ml; 97.5% susceptible) isolates. Only 82.2% of MDR Enterobacteriaceae (n = 2,953) and 64.2% of ceftriaxone-nonsusceptible Klebsiella pneumoniae (n = 1,063) isolates were meropenem susceptible. Among Enterobacter cloacae (22.2% ceftazidime nonsusceptible), 99.8% of the isolates, including 99.3% of the ceftazidime-nonsusceptible isolates, were ceftazidime-avibactam susceptible. Only 23 of 36,380 Enterobacteriaceae (0.06%) isolates were ceftazidime-avibactam nonsusceptible, including 9 metallo-β-lactamase producers and 2 KPC-producing strains with porin alteration; the remaining 12 strains showed negative results for all β-lactamases tested. Ceftazidime-avibactam showed potent activity against P. aeruginosa (MIC50/90, 2/4 μg/ml; 97.1% susceptible), including MDR (MIC50/90, 4/16 μg/ml; 86.5% susceptible) isolates, and inhibited 71.8% of isolates nonsusceptible to meropenem, piperacillin-tazobactam, and ceftazidime (n = 628). In summary, ceftazidime-avibactam demonstrated potent activity against a large collection (n = 44,248) of contemporary Gram-negative bacilli isolated from U.S. patients, including organisms resistant to most currently available agents, such as CRE and meropenem-nonsusceptible P. aeruginosa.


2021 ◽  
Author(s):  
Senjuti Saha ◽  
Chidozie D. Ojobor ◽  
Erik Mackinnon ◽  
Olesia I. North ◽  
Joseph Bondy-Denomy ◽  
...  

ABSTRACTMost Pseudomonas aeruginosa strains produce bacteriocins derived from contractile or non-contractile phage tails known as R-type and F-type pyocins, respectively. These bacteriocins possess strain-specific bactericidal activity against P. aeruginosa and likely increase evolutionary fitness through intraspecies competition. R-type pyocins have been studied extensively and show promise as alternatives to antibiotics. Although they have similar therapeutic potential, experimental studies on F-type pyocins are limited. Here, we provide a bioinformatic and experimental investigation of F-type pyocins. We introduce a systematic naming scheme for genes found in R- and F-type pyocin operons and identify 15 genes invariably found in strains producing F-type pyocins. Five proteins encoded at the 3’-end of the F-type pyocin cluster are divergent in sequence, and likely determine bactericidal specificity. We use sequence similarities among these proteins to define 11 distinct F-type pyocin groups, five of which had not been previously described. The five genes encoding the variable proteins associate in two modules that have clearly re-assorted independently during the evolution of these operons. These proteins are considerably more diverse than the specificity-determining tail fibers of R-type pyocins, suggesting that F-type pyocins emerged earlier or have been subject to distinct evolutionary pressures. Experimental studies on six F-type pyocin groups show that each displays a distinct spectrum of bactericidal activity. This activity is strongly influenced by the lipopolysaccharide O-antigen type, but other factors also play a role. F-type pyocins appear to kill as efficiently as R-type pyocins. These studies set the stage for the development of F-type pyocins as anti-bacterial therapeutics.IMPORTANCEPseudomonas aeruginosa is an opportunistic pathogen that causes a broad spectrum of antibiotic resistant infections with high mortality rates, particularly in immunocompromised individuals and cystic fibrosis patients. Due to the increasing frequency of multidrug-resistant P. aeruginosa infections, there is great interest in the development of alternative therapeutics. One alternative is protein-based antimicrobials called bacteriocins, which are produced by one strain of bacteria to kill other strains. In this study, we investigate F-type pyocins, bacteriocins naturally produced by P. aeruginosa that resemble non-contractile phage tails. We show that they are potent killers of P. aeruginosa, and distinct pyocin groups display different killing specificities. We have identified the probable specificity determinants of F-type pyocins, which opens up the potential to engineer them to precisely target strains of pathogenic bacteria. The resemblance of F-type pyocins to well characterized phage tails will greatly facilitate their development into effective antibacterials.


2017 ◽  
Vol 61 (5) ◽  
Author(s):  
Helena Turano ◽  
Fernando Gomes ◽  
Gesiele A. Barros-Carvalho ◽  
Ralf Lopes ◽  
Louise Cerdeira ◽  
...  

ABSTRACT A novel transposon belonging to the Tn3-like family was identified on the chromosome of a commensal strain of Pseudomonas aeruginosa sequence type 2343 (ET02). Tn6350 is 7,367 bp long and harbors eight open reading frames (ORFs), an ATPase (IS481 family), a transposase (DDE catalytic type), a Tn3 resolvase, three hypothetical proteins, and genes encoding the new pyocin S8 with its immunity protein. We show that pyocin S8 displays activity against carbapenemase-producing P. aeruginosa, including IMP-1, SPM-1, VIM-1, GES-5, and KPC-2 producers.


2017 ◽  
Vol 61 (9) ◽  
Author(s):  
Tatsuya Tada ◽  
Kayo Shimada ◽  
Kazuhito Satou ◽  
Takashi Hirano ◽  
Bharat M. Pokhrel ◽  
...  

ABSTRACT A total of 11 multidrug-resistant Pseudomonas aeruginosa clinical isolates were obtained in Nepal. Four of these isolates harbored genes encoding one or more carbapenemases (DIM-1, NDM-1, and/or VIM-2), and five harbored genes encoding a 16S rRNA methyltransferase (RmtB4 or RmtF2). A novel RmtF variant, RmtF2, had a substitution (K65E) compared with the same gene in RmtF. To our knowledge, this is the first report describing carbapenemase- and 16S rRNA methyltransferase-coproducing P. aeruginosa clinical isolates in Nepal.


2013 ◽  
Vol 58 (1) ◽  
pp. 221-228 ◽  
Author(s):  
Sophie Guénard ◽  
Cédric Muller ◽  
Laura Monlezun ◽  
Philippe Benas ◽  
Isabelle Broutin ◽  
...  

ABSTRACTConstitutive overproduction of the pump MexXY-OprM is recognized as a major cause of resistance to aminoglycosides, fluoroquinolones, and zwitterionic cephalosporins inPseudomonas aeruginosa. In this study, 57 clonally unrelated strains recovered from non-cystic fibrosis patients were analyzed to characterize the mutations resulting in upregulation of themexXYoperon. Forty-four (77.2%) of the strains, classified asagrZmutants were found to harbor mutations inactivating the local repressor gene (mexZ) of themexXYoperon (n= 33; 57.9%) or introducing amino acid substitutions in its product, MexZ (n= 11; 19.3%). These sequence variations, which mapped in the dimerization domain, the DNA binding domain, or the rest of the MexZ structure, mostly affected amino acid positions conserved in TetR-like regulators. The 13 remaining MexXY-OprM strains (22.8%) contained intactmexZgenes encoding wild-type MexZ proteins. Eight (14.0%) of these isolates, classified asagrW1mutants, overexpressed the gene PA5471, which codes for the MexZ antirepressor AmrZ, with 5 strains exhibiting growth defects at 37°C and 44°C, consistent with mutations impairing ribosome activity. Interestingly, oneagrW1mutant appeared to harbor a 7-bp deletion in the coding sequence of the leader peptide, PA5471.1, involved in ribosome-dependent, translational attenuation of PA5471 expression. Finally, DNA sequencing and complementation experiments revealed that 5 (8.8%) strains, classified asagrW2mutants, harbored single amino acid variations in the sensor histidine kinase of ParRS, a two-component system known to positively controlmexXYexpression. Collectively, these results demonstrate that clinical strains ofP. aeruginosaexploit different regulatory circuitries to mutationally overproduce the MexXY-OprM pump and become multidrug resistant, which accounts for the high prevalence of MexXY-OprM mutants in the clinical setting.


2017 ◽  
Vol 61 (7) ◽  
Author(s):  
Zhaojun Zheng ◽  
Nagendran Tharmalingam ◽  
Qingzhong Liu ◽  
Elamparithi Jayamani ◽  
Wooseong Kim ◽  
...  

ABSTRACT The increasing prevalence of antibiotic resistance has created an urgent need for alternative drugs with new mechanisms of action. Antimicrobial peptides (AMPs) are promising candidates that could address the spread of multidrug-resistant bacteria, either alone or in combination with conventional antibiotics. We studied the antimicrobial efficacy and bactericidal mechanism of cecropin A2, a 36-residue α-helical cationic peptide derived from Aedes aegypti cecropin A, focusing on the common pathogen Pseudomonas aeruginosa. The peptide showed little hemolytic activity and toxicity toward mammalian cells, and the MICs against most clinical P. aeruginosa isolates were 32 to 64 μg/ml, and its MICs versus other Gram-negative bacteria were 2 to 32 μg/ml. Importantly, cecropin A2 demonstrated synergistic activity against P. aeruginosa when combined with tetracycline, reducing the MICs of both agents by 8-fold. The combination was also effective in vivo in the P. aeruginosa/Galleria mellonella model (P < 0.001). We found that cecropin A2 bound to P. aeruginosa lipopolysaccharides, permeabilized the membrane, and interacted with the bacterial genomic DNA, thus facilitating the translocation of tetracycline into the cytoplasm. In summary, the combination of cecropin A2 and tetracycline demonstrated synergistic antibacterial activity against P. aeruginosa in vitro and in vivo, offering an alternative approach for the treatment of P. aeruginosa infections.


2020 ◽  
Vol 64 (7) ◽  
Author(s):  
José Manuel Ortiz de la Rosa ◽  
Patrice Nordmann ◽  
Laurent Poirel

ABSTRACT Many transferable quinolone resistance mechanisms have been identified in Gram-negative bacteria. The plasmid-encoded 65-amino-acid-long ciprofloxacin-modifying enzyme CrpP was recently identified in Pseudomonas aeruginosa isolates. We analyzed a collection of 100 clonally unrelated and multidrug-resistant P. aeruginosa clinical isolates, among which 46 were positive for crpP-like genes, encoding five CrpP variants conferring variable levels of reduced susceptibility to fluoroquinolones. These crpP-like genes were chromosomally located as part of pathogenicity genomic islands.


2015 ◽  
Vol 60 (3) ◽  
pp. 1194-1201 ◽  
Author(s):  
G. L. Drusano ◽  
William Hope ◽  
Alasdair MacGowan ◽  
Arnold Louie

We are in a crisis of bacterial resistance. For economic reasons, most pharmaceutical companies are abandoning antimicrobial discovery efforts, while, in health care itself, infection control and antibiotic stewardship programs have generally failed to prevent the spread of drug-resistant bacteria. At this point, what can be done? The first step has been taken. Governments and international bodies have declared there is a worldwide crisis in antibiotic drug resistance. As discovery efforts begin anew, what more can be done to protect newly developing agents and improve the use of new drugs to suppress resistance emergence? A neglected path has been the use of recent knowledge regarding antibiotic dosing as single agents and in combination to minimize resistance emergence, while also providing sufficient early bacterial kill. In this review, we look at the data for resistance suppression. Approaches include increasing the intensity of therapy to suppress resistant subpopulations; developing concepts of clinical breakpoints to include issues surrounding suppression of resistance; and paying attention to the duration of therapy, which is another important issue for resistance suppression. New understanding of optimizing combination therapy is of interest for difficult-to-treat pathogens likePseudomonas aeruginosa,Acinetobacterspp., and multidrug-resistant (MDR)Enterobacteriaceae. These lessons need to be applied to our old drugs as well to preserve them and to be put into national and international antibiotic resistance strategies. As importantly, from a regulatory perspective, new chemical entities should have a resistance suppression plan at the time of regulatory review. In this way, we can make the best of our current situation and improve future prospects.


Sign in / Sign up

Export Citation Format

Share Document