scholarly journals Telomere and ATM Dynamics in CD4 T-Cell Depletion in Active and Virus-Suppressed HIV Infections

2020 ◽  
Vol 94 (22) ◽  
Author(s):  
Sushant Khanal ◽  
Qiyuan Tang ◽  
Dechao Cao ◽  
Juan Zhao ◽  
Lam Nhat Nguyen ◽  
...  

ABSTRACT CD4 T-cell depletion is a hallmark of HIV/AIDS, but the underlying mechanism is still unclear. We have recently shown that ataxia-telangiectasia-mutated (ATM) deficiency in CD4 T cells accelerates DNA damage, telomere erosion, and cell apoptosis in HIV-infected individuals on antiretroviral therapy (ART). Whether these alterations in ART-treated HIV subjects occur in vitro in HIV-infected CD4 T cells remains unknown. In this study, we employed a cellular model of HIV infection to characterize the mechanisms underlying CD4 T-cell destruction by analyzing the telomeric DNA damage response (DDR) and cellular apoptosis in highly permissive SupT1 cells, followed by the validation of our observations in primary CD4 T cells with active or drug-suppressed HIV infection. Specifically, we established an in vitro HIV T-cell culture system with viral replication and raltegravir (RAL; an integrase inhibitor) suppression, mimicking active and ART-controlled HIV infection in vivo. We demonstrated that HIV-induced, telomeric DDR plays a pivotal role in triggering telomere erosion, premature T-cell aging, and CD4 T-cell apoptosis or depletion via dysregulation of the PI3K/ATM pathways. This in vitro model provides a new tool to investigate HIV pathogenesis, and our results shed new light on the molecular mechanisms of telomeric DDR and CD4 T-cell homeostasis during HIV infection. IMPORTANCE The hallmark of HIV infection is a gradual depletion of CD4 T cells, with a progressive decline of host immunity. How CD4 T cells are depleted in individuals with active and virus-suppressed HIV infection remains unclear. In this study, we employed a cellular model of HIV infection to characterize the mechanisms underlying CD4 T-cell destruction by analyzing the chromosome end (telomere) DNA damage response (DDR) and cellular apoptosis in a T-cell line (highly permissive SupT1 cells), as well as in primary CD4 T cells with active or drug-suppressed HIV infection. We demonstrated that HIV-induced telomeric DDR plays a critical role in inducing telomere loss, premature cell aging, and CD4 T-cell apoptosis or depletion via dysregulation of the PI3K/ATM pathways. This study sheds new light on the molecular mechanisms of telomeric DDR and its role in CD4 T-cell homeostasis during HIV infection.

2009 ◽  
Vol 116 (12) ◽  
pp. 861-870 ◽  
Author(s):  
Christian Körner ◽  
Benjamin Krämer ◽  
Daniela Schulte ◽  
Martin Coenen ◽  
Stefan Mauss ◽  
...  

Apoptosis importantly contributes to loss of CD4+ T-cells in HIV infection, and modification of their apoptosis may explain why HIV/HCV (hepatitis C virus)-co-infected patients are more likely to die from liver-related causes, although the effects of HCV on HIV infection remain unclear. In the present study, we studied in a cross-sectional and serial analysis spontaneous ex vivo CD4+ T-cell apoptosis in HIV/HCV-co-infected and HIV-mono-infected patients before and after HAART (highly active antiretroviral therapy). Apoptosis of peripheral blood CD4+ T-cells was measured by both a PARP [poly(ADP-ribose) polymerase] and TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling) assay to detect cells with irreversible apoptosis. Although hepatitis C alone did not increase CD4+ T-cell apoptosis, HCV co-infection disproportionately increased elevated rates of apoptosis in CD4+ T-cells from untreated HIV-positive patients. Increased CD4+ T-cell apoptosis was closely correlated with HIV, but not HCV, viral loads. Under HAART, increased rates of CD4+ T-cell apoptosis rapidly decreased both in HIV-mono-infected and HIV/HCV-co-infected patients, without any significant difference in apoptosis rates between the two patient groups after 4 weeks of therapy. Nevertheless residual CD4+ T-cell apoptosis did not reach the normal levels seen in healthy controls and remained higher in HIV patients receiving protease inhibitors than in patients with other antiretroviral regimens. The results of the present study suggest that HCV co-infection sensitizes CD4+ T-cells towards apoptosis in untreated HIV-positive patients. However, this effect is rapidly lost under effective antiretroviral therapy.


1998 ◽  
Vol 187 (5) ◽  
pp. 711-720 ◽  
Author(s):  
Alicia Algeciras ◽  
David H. Dockrell ◽  
David H. Lynch ◽  
Carlos V. Paya

The current knowledge of CD4 function is limited to its role as a necessary coreceptor in TCR-initiated signaling. We have investigated whether CD4 regulates additional T cell functions. Using human primary resting CD4+ T cells, we demonstrate that CD4 activation is sufficient to induce lymphocyte death. Immediately after CD4 cross-linking, CD4+ T cells are rendered susceptible to apoptosis mediated by TNF or FasL. This, together with the concomitant induction of FasL within the same population, results in significant CD4+ T cell death in vitro. The CD4-dependent induction of susceptibility to apoptosis that is mediated by TNF or FasL is protein synthesis independent but phosphorylation dependent. After CD4 activation, PKC regulates susceptibility to apoptosis mediated by FasL but not the induction of susceptibility to TNF-dependent apoptosis. Moreover, significant differences between CD3 and CD4 activation were observed with regards to the kinetics of induction of CD4+ T cell susceptibility to FasL- and TNF-mediated apoptosis. Altogether, these results provide a model with which to study the molecular mechanisms regulating lymphocyte survival after CD4 activation, and highlight the potential role of CD4 in controlling lymphocyte apoptosis under physiological conditions or in disease states such as HIV infection.


Blood ◽  
1999 ◽  
Vol 94 (3) ◽  
pp. 1021-1027 ◽  
Author(s):  
Elaine M. Sloand ◽  
Princy N. Kumar ◽  
Sonnie Kim ◽  
Aniruddho Chaudhuri ◽  
Frank F. Weichold ◽  
...  

CD4+ T cells from patients with human immunodeficiency virus (HIV) infection undergo apoptosis at an increased rate, which leads to their depletion during disease progression. Both the Fas-Receptor (Fas-R) and interleukin-1β (IL-1β)–converting enzyme (ICE; caspase 1) appear to play a role in the mechanism of apoptosis of CD4+ lymphocytes. Although Fas-R is upregulated on both CD4+ and CD8+ cells in HIV-infected patients, results from our laboratory and others indicate that, in patients with advanced disease, CD4+ cells preferentially express ICE. Protease inhibitors have successfully halted the progression of HIV disease and increased CD4+ T counts. In this study, we examined the effect of protease inhibitors on Fas-R (CD95), ICE (caspase 1) expression, apoptosis, and cell death in CD4+ T cells of (1) HIV-infected patients who were receiving protease inhibitors, and (2) normal and patient CD4+ T cells cultured with a protease inhibitor in vitro. Fifteen patients with advanced HIV disease on treatment showed dramatically decreased CD4+ T-cell ICE expression, diminished apoptosis, and increased numbers of CD4+ cells within 6 weeks of institution of protease inhibitor therapy, and before down-modulation of Fas-R (CD95) expression was evident. To determine the role of HIV infection, we studied the effect of ritonavir, a protease inhibitor, on normal and patient cells in vitro. Stimulated and unstimulated normal CD4+ T cells, cultured with protease inhibitor, demonstrated markedly decreased apoptosis and ICE expression (P = .01). While Fas-R expression was not significantly altered during short-term culture by such treatment, Fas-Ligand (Fas-L) membrane expression of phytohemagglutinin (PHA)-stimulated blood lymphocytes was decreased by protease inhibitor. In the presence of ritonavir, CD4+ T cells from HIV-infected patients showed similar changes in ICE intracellular levels without alteration of Fas expression. In conclusion, protease inhibitors appear to decrease CD4+ T-cell ICE expression and apoptosis before they affect Fas-R expression in HIV-infected patients. This action was independent of HIV infection, as similar effects were seen in CD4+ T cells from normal controls. Some of the benefit of protease inhibitors may be related to modification of programmed cell death, which increases CD4+ T-cell number. Whether this is due to directly to the changes effected in the caspase system remains to be determined.


2019 ◽  
Vol 11 (2) ◽  
pp. 108-123
Author(s):  
Dan Tong ◽  
Li Zhang ◽  
Fei Ning ◽  
Ying Xu ◽  
Xiaoyu Hu ◽  
...  

Abstract Common γ chain cytokines are important for immune memory formation. Among them, the role of IL-2 remains to be fully explored. It has been suggested that this cytokine is critically needed in the late phase of primary CD4 T cell activation. Lack of IL-2 at this stage sets for a diminished recall response in subsequent challenges. However, as IL-2 peak production is over at this point, the source and the exact mechanism that promotes its production remain elusive. We report here that resting, previously antigen-stimulated CD4 T cells maintain a minimalist response to dendritic cells after their peak activation in vitro. This subtle activation event may be induced by DCs without overt presence of antigen and appears to be stronger if IL-2 comes from the same dendritic cells. This encounter reactivates a miniature IL-2 production and leads a gene expression profile change in these previously activated CD4 T cells. The CD4 T cells so experienced show enhanced reactivation intensity upon secondary challenges later on. Although mostly relying on in vitro evidence, our work may implicate a subtle programing for CD4 T cell survival after primary activation in vivo.


2015 ◽  
Vol 89 (8) ◽  
pp. 4449-4456 ◽  
Author(s):  
Sumiti Jain ◽  
Matthew T. Trivett ◽  
Victor I. Ayala ◽  
Claes Ohlen ◽  
David E. Ott

ABSTRACTThe expression of xenogeneic TRIM5α proteins can restrict infection in various retrovirus/host cell pairings. Previously, we have shown that African green monkey TRIM5α (AgmTRIM5α) potently restricts both human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus mac239 (SIVmac239) replication in a transformed human T-cell line (L. V. Coren, et al., Retrovirology 12:11, 2015,http://dx.doi.org/10.1186/s12977-015-0137-9). To assess AgmTRIM5α restriction in primary cells, we transduced AgmTRIM5α into primary rhesus macaque CD4 T cells and infected them with SIVmac239. Experiments with T-cell clones revealed that AgmTRIM5α could reproducibly restrict SIVmac239replication, and that this restriction synergizes with an intrinsic resistance to infection present in some CD4 T-cell clones. AgmTRIM5α transduction of virus-specific CD4 T-cell clones increased and prolonged their ability to suppress SIV spread in CD4 target cells. This increased antiviral function was strongly linked to decreased viral replication in the AgmTRIM5α-expressing effectors, consistent with restriction preventing the virus-induced cytopathogenicity that disables effector function. Taken together, our data show that AgmTRIM5α restriction, although not absolute, reduces SIV replication in primary rhesus CD4 T cells which, in turn, increases their antiviral function. These results support priorin vivodata indicating that the contribution of virus-specific CD4 T-cell effectors to viral control is limited due to infection.IMPORTANCEThe potential of effector CD4 T cells to immunologically modulate SIV/HIV infection likely is limited by their susceptibility to infection and subsequent inactivation or elimination. Here, we show that AgmTRIM5α expression inhibits SIV spread in primary effector CD4 T cellsin vitro. Importantly, protection of effector CD4 T cells by AgmTRIM5α markedly enhanced their antiviral function by delaying SIV infection, thereby extending their viability despite the presence of virus. Ourin vitrodata support priorin vivoHIV-1 studies suggesting that the antiviral CD4 effector response is impaired due to infection and subsequent cytopathogenicity. The ability of AgmTRIM5α expression to restrict SIV infection in primary rhesus effector CD4 T cells now opens an opportunity to use the SIV/rhesus macaque model to further elucidate the potential and scope of anti-AIDS virus effector CD4 T-cell function.


2021 ◽  
Vol 17 (4) ◽  
pp. e1009522
Author(s):  
Orion Tong ◽  
Gabriel Duette ◽  
Thomas Ray O’Neil ◽  
Caroline M. Royle ◽  
Hafsa Rana ◽  
...  

Although HIV infection inhibits interferon responses in its target cells in vitro, interferon signatures can be detected in vivo soon after sexual transmission, mainly attributed to plasmacytoid dendritic cells (pDCs). In this study, we examined the physiological contributions of pDCs to early HIV acquisition using coculture models of pDCs with myeloid DCs, macrophages and the resting central, transitional and effector memory CD4 T cell subsets. pDCs impacted infection in a cell-specific manner. In myeloid cells, HIV infection was decreased via antiviral effects, cell maturation and downregulation of CCR5 expression. In contrast, in resting memory CD4 T cells, pDCs induced a subset-specific increase in intracellular HIV p24 protein expression without any activation or increase in CCR5 expression, as measured by flow cytometry. This increase was due to reactivation rather than enhanced viral spread, as blocking HIV entry via CCR5 did not alter the increased intracellular p24 expression. Furthermore, the load and proportion of cells expressing HIV DNA were restricted in the presence of pDCs while reverse transcriptase and p24 ELISA assays showed no increase in particle associated reverse transcriptase or extracellular p24 production. In addition, PDCs also markedly induced the expression of CD69 on infected CD4 T cells and other markers of CD4 T cell tissue retention. These phenotypic changes showed marked parallels with resident memory CD4 T cells isolated from anogenital tissue using enzymatic digestion. Production of IFNα by pDCs was the main driving factor for all these results. Thus, pDCs may reduce HIV spread during initial mucosal acquisition by inhibiting replication in myeloid cells while reactivating latent virus in resting memory CD4 T cells and retaining them for immune clearance.


2019 ◽  
Vol 37 (2) ◽  
pp. 212-242 ◽  
Author(s):  
Vardayani Ratti ◽  
Seema Nanda ◽  
Susan K Eszterhas ◽  
Alexandra L Howell ◽  
Dorothy I Wallace

Abstract The use of gene-editing technology has the potential to excise the CCR5 gene from haematopoietic progenitor cells, rendering their differentiated CD4-positive (CD4+) T cell descendants HIV resistant. In this manuscript, we describe the development of a mathematical model to mimic the therapeutic potential of gene editing of haematopoietic progenitor cells to produce a class of HIV-resistant CD4+ T cells. We define the requirements for the permanent suppression of viral infection using gene editing as a novel therapeutic approach. We develop non-linear ordinary differential equation models to replicate HIV production in an infected host, incorporating the most appropriate aspects found in the many existing clinical models of HIV infection, and extend this model to include compartments representing HIV-resistant immune cells. Through an analysis of model equilibria and stability and computation of $R_0$ for both treated and untreated infections, we show that the proposed therapy has the potential to suppress HIV infection indefinitely and return CD4+ T cell counts to normal levels. A computational study for this treatment shows the potential for a successful ‘functional cure’ of HIV. A sensitivity analysis illustrates the consistency of numerical results with theoretical results and highlights the parameters requiring better biological justification. Simulations of varying level production of HIV-resistant CD4+ T cells and varying immune enhancements as the result of these indicate a clear threshold response of the model and a range of treatment parameters resulting in a return to normal CD4+ T cell counts.


2019 ◽  
Vol 71 (8) ◽  
pp. 1905-1911 ◽  
Author(s):  
Paulo S Silveira-Mattos ◽  
Beatriz Barreto-Duarte ◽  
Beatriz Vasconcelos ◽  
Kiyoshi F Fukutani ◽  
Caian L Vinhaes ◽  
...  

Abstract Background Diagnosis of active tuberculosis (ATB) currently relies on detection of Mycobacterium tuberculosis (Mtb). Identifying patients with extrapulmonary TB (EPTB) remains challenging because microbiological confirmation is often not possible. Highly accurate blood-based tests could improve diagnosis of both EPTB and pulmonary TB (PTB) and timely initiation of anti-TB therapy. Methods A case-control study was performed using discriminant analyses to validate an approach using Mtb-specific CD4+T-cell activation markers in blood to discriminate PTB and EPTB from latent TB infection (LTBI) as well as EPTB from PTB in 270 Brazilian individuals. We further tested the effect of human immunodeficiency virus (HIV) coinfection on diagnostic performance. Frequencies of interferon-γ +CD4+T cells expressing CD38, HLADR, and/or Ki67 were assessed by flow cytometry. Results EPTB and PTB were associated with higher frequencies of CD4+T cells expressing CD38, HLADR, or Ki67 compared with LTBI (all P values < .001). Moreover, frequencies of HLADR+ (P = .03) or Ki67+ (P < .001) cells accurately distinguished EPTB from PTB. HIV infection did not affect the capacity of these markers to distinguish ATB from LTBI or EPTB from PTB. Conclusions Cell activation markers in Mtb-specific CD4+T cells distinguished ATB from LTBI and EPTB from PTB, regardless of HIV infection status. These parameters provide an attractive approach for developing blood-based diagnostic tests for both active and latent TB.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3106-3106
Author(s):  
Sachi Tsunemi ◽  
Tsuyoshi Iwasaki ◽  
Takehito Imado ◽  
Satoshi Higasa ◽  
Eizo Kakishita ◽  
...  

Abstract Human immunodeficiency virus (HIV) infection is characterized by marked defects in CD4+ helper T cell (Th) functions that commonly progress to a substantial decline in peripheral CD4+ T cell counts. However, the mechanisms responsible for the loss of Th functions in HIV-infected patients independent of CD4+ T cell counts remains unclear. CD4+CD25+ regulatory T cells (T Reg) are essential for down-regulation of both autoreactive and alloreactive T cells. Therefore, we decided to investigate the role of T Reg in immune status of HIV-infected patients. We examined the expression of cell surface CD25, cytoplasmic IL-4 and cytoplasmic IFN-gamma in peripheral blood CD4+ T cells from both healthy controls (n=9) and HIV-infected patients (n=43). We also compared T Reg functions between the 2 groups. CD4+CD25+ T Reg isolated from both HIV-infected patients and healthy controls strongly expressed CD45RO, HLA-DR, and FoxP3, and suppressed the proliferation of CD4+CD25− T cells, suggesting that CD4+CD25+ T cells from both healthy controls and HIV-infected patients possess phenotypic and functional characteristics of Treg. CD4+CD25high T cells are a subset of circulating CD4+CD25+ T cells in normal humans and exhibit strong in vitro regulatory functions similar to those reported for murine CD4+CD25+ T Reg. We measured the frequency of CD4+CD25high T Reg by analysis of surface CD25 on CD4+ T cells in peripheral blood samples. We also examined Th1 and Th2 frequencies by analysis of cytoplasmic IFN-gamma and IL-4 levels in CD4+ T cells. T Reg from HIV-infected patients with detectable plasma HIV-1 RNA showed a statistically significant increase in CD4+CD25high cell frequency (p<0.05) compared to healthy controls, with T Reg frequencies inversely proportional to CD4+ T cell numbers (p<0.01). However, in HIV-infected patients with undetectable plasma HIV-RNA, frequencies of CD4+CD25high T Reg were not increased and not related to CD4+ T cell numbers. In both HIV-infected patient groups, T Reg frequency was inversely related to Th1 frequency (detectable: p<0.05, undetectable: p<0.001), but positively related to Th2 frequency (detectable: p<0.01, undetectable: p<0.001). Our results indicate that increased frequencies of peripheral blood T Reg were related to disease progression as measured by detectable plasma HIV-1 RNA, decreased peripheral blood CD4+ T cell counts, and polarization toward Th2 immune responses in HIV-infected patients. HIV infection may lead to induction of T reg that inhibit antiviral immune responses, resulting in the progression of the disease. Manipulation of T Reg could help restore antiviral immune responses in HIV infection, and prevent the progression of HIV infection.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3925-3925
Author(s):  
Pedro Horna ◽  
Rahul Chavan ◽  
Jason Brayer ◽  
Ildefonso Suarez ◽  
Eduardo M. Sotomayor

Abstract A large number of CD4+ T-cells from either aged mice or humans display surface markers associated with an activated/memory phenotype. In spite of these changes however, these T-cells have a markedly decreased ability to proliferate and produce IL-2 in response to antigen stimulation in vitro. The cellular and molecular mechanisms involved in this age-related unresponsiveness of the CD4+ T-cell compartment remain poorly understood. Utilizing a well-established experimental system in which transgenic CD4+ T cells specific for a MHC class II restricted epitope of influenza hemagglutinin (HA) are adoptively transferred into non-transgenic recipients, we have previously elucidated important mechanisms involved in the induction and maintenance of CD4+ T-cell tolerance. Our studies were however limited to the analysis of T-cell function in lymphoma bearing young mice (4 to 10 weeks old). Here, we assessed the influence of the aged microenvironment in determining the phenotype and function of antigen-specific T-cells. CD4+ T-cells from young TCR transgenic mice (2 months old) were adoptively transferred into either old (20–24 months) or young (2 months old) non-transgenic mice. Two weeks later, clonotypic and non-clonotypic CD4+ T-cells were isolated from the spleens of these animals and their phenotype and function were determined in vitro. Reminiscent of the age-related changes observed within the normal CD4+ T-cell repertoire, young transgenic T-cells transferred into aged hosts have acquired an activated/memory phenotype but displayed a significant impairment in antigen-specific proliferation and IL-2 production in response to cognate antigen in vitro. These changes were not due to homeostatic proliferation of the transferred T-cells into the relatively lymphopenic aged host. To determine whether the changes observed in “aged” T-cells were reversible or not, we adoptively transfer old T-cells back into young hosts or into control old mice. While old transgenic T-cells transferred into an old environment remained fully unresponsive, the adoptive transfer of the same old T-cells into a young host restored their ability to proliferate and produce IL-2. Surprisingly, these “old” T-cells were able to produce significantly higher levels of IFN-gamma indicative of their memory/effector phenotype. Furthermore, young animals adoptively transferred with “aged” antigen-specific T-cells were now capable of rejecting A20 B-cell lymphomas expressing HA as a model tumor antigen (A20HA). Taking together, factor(s) present in the aged microenvironment are responsible for limiting the effector function of CD4+ T-cells that seem otherwise well equipped to become fully activated if the proper environment is provided (young microenvironment). The potential role of soluble suppressive factors as well as regulatory T-cells (Tregs) in the unresponsiveness observed in the T-cell compartment of aged hosts will be discussed.


Sign in / Sign up

Export Citation Format

Share Document