scholarly journals Structures of Two Human Astrovirus Capsid/Neutralizing Antibody Complexes Reveal Distinct Epitopes and Inhibition of Virus Attachment to Cells

2021 ◽  
Author(s):  
Lena Ricemeyer ◽  
Nayeli Aguilar-Hernández ◽  
Tomás López ◽  
Rafaela Espinosa ◽  
Sarah Lanning ◽  
...  

Human astrovirus is an important cause of viral gastroenteritis worldwide. Young children, the elderly, and the immunocompromised are especially at risk for contracting severe disease. However, no vaccines exist to combat human astrovirus infection. Evidence points to the importance of antibodies in enabling protection of healthy adults from reinfection. To develop an effective subunit vaccine that broadly protects against diverse astrovirus serotypes, we must understand how neutralizing antibodies target the capsid surface at the molecular level. Here, we report the structures of the human astrovirus capsid spike domain bound to two neutralizing monoclonal antibodies. These antibodies bind two distinct conformational epitopes on the spike surface. We add to existing evidence that the human astrovirus capsid spike contains a receptor-binding domain and demonstrate that both antibodies neutralize human astrovirus by blocking virus attachment to host cells. We identify patches of conserved amino acids that overlap or border the antibody epitopes and may constitute a receptor-binding site. Our findings provide a basis to develop therapies that prevent and treat human astrovirus gastroenteritis. Importance Human astroviruses infect nearly every person in the world during childhood and cause diarrhea, vomiting, and fever. Despite the prevalence of this virus, little is known about how antibodies block virus infection. Here, we determined crystal structures of the astrovirus capsid protein in complex with two virus-neutralizing antibodies. We show that the antibodies bind two distinct sites on the capsid spike domain; however, both antibodies block virus attachment to human cells. Importantly, our findings support the use of the human astrovirus capsid spike as an antigen in a subunit-based vaccine to prevent astrovirus disease.

2016 ◽  
Vol 91 (2) ◽  
Author(s):  
Walter A. Bogdanoff ◽  
Jocelyn Campos ◽  
Edmundo I. Perez ◽  
Lu Yin ◽  
David L. Alexander ◽  
...  

ABSTRACT Human astroviruses (HAstVs) are a leading cause of viral diarrhea in young children, the immunocompromised, and the elderly. There are no vaccines or antiviral therapies against HAstV disease. Several lines of evidence point to the presence of protective antibodies in healthy adults as a mechanism governing protection against reinfection by HAstV. However, development of anti-HAstV therapies is hampered by the gap in knowledge of protective antibody epitopes on the HAstV capsid surface. Here, we report the structure of the HAstV capsid spike domain bound to the neutralizing monoclonal antibody PL-2. The antibody uses all six complementarity-determining regions to bind to a quaternary epitope on each side of the dimeric capsid spike. We provide evidence that the HAstV capsid spike is a receptor-binding domain and that the antibody neutralizes HAstV by blocking virus attachment to cells. We identify patches of conserved amino acids that overlap the antibody epitope and may comprise a receptor-binding site. Our studies provide a foundation for the development of therapies to prevent and treat HAstV diarrheal disease. IMPORTANCE Human astroviruses (HAstVs) infect nearly every person in the world during childhood and cause diarrhea, vomiting, and fever. Despite the prevalence of this virus, little is known about how antibodies in healthy adults protect them against reinfection. Here, we determined the crystal structure of a complex of the HAstV capsid protein and a virus-neutralizing antibody. We show that the antibody binds to the outermost spike domain of the capsid, and we provide evidence that the antibody blocks virus attachment to human cells. Importantly, our findings suggest that a subunit-based vaccine focusing the immune system on the HAstV capsid spike domain could be effective in protecting children against HAstV disease.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 979
Author(s):  
Lena Meyer ◽  
Kevin Delgado-Cunningham ◽  
Nicholas Lorig-Roach ◽  
Jordan Ford ◽  
Rebecca M. DuBois

Human astroviruses are an important cause of viral gastroenteritis globally, yet few studies have investigated the serostatus of adults to establish rates of previous infection. Here, we applied biolayer interferometry immunosorbent assay (BLI-ISA), a recently developed serosurveillance technique, to measure the presence of blood plasma IgG antibodies directed towards the human astrovirus capsid spikes from serotypes 1–8 in a cross-sectional sample of a United States adult population. The seroprevalence rates of IgG antibodies were 73% for human astrovirus serotype 1, 62% for serotype 3, 52% for serotype 4, 29% for serotype 5, 27% for serotype 8, 22% for serotype 2, 8% for serotype 6, and 8% for serotype 7. Notably, seroprevalence rates for capsid spike antigens correlate with neutralizing antibody rates determined previously. This work is the first seroprevalence study evaluating all eight classical human astrovirus serotypes.


2021 ◽  
Author(s):  
George W. Carnell ◽  
Katarzyna A. Ciazynska ◽  
David A. Wells ◽  
Xiaoli Xiong ◽  
Ernest T. Aguinam ◽  
...  

AbstractThe majority of SARS-CoV-2 vaccines in use or in advanced clinical development are based on the viral spike protein (S) as their immunogen. S is present on virions as pre-fusion trimers in which the receptor binding domain (RBD) is stochastically open or closed. Neutralizing antibodies have been described that act against both open and closed conformations. The long-term success of vaccination strategies will depend upon inducing antibodies that provide long-lasting broad immunity against evolving, circulating SARS-CoV-2 strains, while avoiding the risk of antibody dependent enhancement as observed with other Coronavirus vaccines. Here we have assessed the results of immunization in a mouse model using an S protein trimer that is arrested in the closed state to prevent exposure of the receptor binding site and therefore interaction with the receptor. We compared this with a range of other modified S protein constructs, including representatives used in current vaccines. We found that all trimeric S proteins induce a long-lived, strongly neutralizing antibody response as well as T-cell responses. Notably, the protein binding properties of sera induced by the closed spike differed from those induced by standard S protein constructs. Closed S proteins induced more potent neutralising responses than expected based on the degree to which they inhibit interactions between the RBD and ACE2. These observations suggest that closed spikes recruit different, but equally potent, virus-inhibiting immune responses than open spikes, and that this is likely to include neutralizing antibodies against conformational epitopes present in the closed conformation. Together with their improved stability and storage properties we suggest that closed spikes may be a valuable component of refined, next-generation vaccines.


2020 ◽  
Vol 3 (4) ◽  
pp. 246-256
Author(s):  
Yaping Sun ◽  
Mitchell Ho

Abstract SARS-CoV-2 antibody therapeutics are being evaluated in clinical and preclinical stages. As of 11 October 2020, 13 human monoclonal antibodies targeting the SARS-CoV-2 spike protein have entered clinical trials with three (REGN-COV2, LY3819253/LY-CoV555, and VIR-7831/VIR-7832) in phase 3. On 9 November 2020, the US Food and Drug Administration issued an emergency use authorization for bamlanivimab (LY3819253/LY-CoV555) for the treatment of mild-to-moderate COVID-19. This review outlines the development of neutralizing antibodies against SARS-CoV-2, with a focus on discussing various antibody discovery strategies (animal immunization, phage display and B cell cloning), describing binding epitopes and comparing neutralizing activities. Broad-neutralizing antibodies targeting the spike proteins of SARS-CoV-2 and SARS-CoV might be helpful for treating COVID-19 and future infections. VIR-7831/7832 based on S309 is the only antibody in late clinical development, which can neutralize both SARS-CoV-2 and SARS-CoV although it does not directly block virus receptor binding. Thus far, the only cross-neutralizing antibody that is also a receptor binding blocker is nanobody VHH-72. The feasibility of developing nanobodies as inhaled drugs for treating COVID-19 and other respiratory diseases is an attractive idea that is worth exploring and testing. A cocktail strategy such as REGN-COV2, or engineered multivalent and multispecific molecules, combining two or more antibodies might improve the efficacy and protect against resistance due to virus escape mutants. Besides the receptor-binding domain, other viral antigens such as the S2 subunit of the spike protein and the viral attachment sites such as heparan sulfate proteoglycans that are on the host cells are worth investigating.


Author(s):  
Dora Pinto ◽  
Young-Jun Park ◽  
Martina Beltramello ◽  
Alexandra C. Walls ◽  
M. Alejandra Tortorici ◽  
...  

SARS-CoV-2 is a newly emerged coronavirus responsible for the current COVID-19 pandemic that has resulted in more than one million infections and 73,000 deaths1,2. Vaccine and therapeutic discovery efforts are paramount to curb the pandemic spread of this zoonotic virus. The SARS-CoV-2 spike (S) glycoprotein promotes entry into host cells and is the main target of neutralizing antibodies. Here we describe multiple monoclonal antibodies targeting SARS-CoV-2 S identified from memory B cells of a SARS survivor infected in 2003. One antibody, named S309, potently neutralizes SARS-CoV-2 and SARS-CoV pseudoviruses as well as authentic SARS-CoV-2 by engaging the S receptor-binding domain. Using cryo-electron microscopy and binding assays, we show that S309 recognizes a glycan-containing epitope that is conserved within the sarbecovirus subgenus, without competing with receptor attachment. Antibody cocktails including S309 along with other antibodies identified here further enhanced SARS-CoV-2 neutralization and may limit the emergence of neutralization-escape mutants. These results pave the way for using S309 and S309-containing antibody cocktails for prophylaxis in individuals at high risk of exposure or as a post-exposure therapy to limit or treat severe disease.


2021 ◽  
Author(s):  
Wan-ting He ◽  
Meng Yuan ◽  
Sean Callaghan ◽  
Rami Musharrafieh ◽  
Ge Song ◽  
...  

To prepare for future coronavirus (CoV) pandemics, it is desirable to generate vaccines capable of eliciting neutralizing antibody responses against multiple CoVs. Because of the phylogenetic similarity to humans, rhesus macaques are an animal model of choice for many virus-challenge and vaccine-evaluation studies, including SARS-CoV-2. Here, we show that immunization of macaques with SARS-CoV-2 spike (S) protein generates potent receptor binding domain cross-neutralizing antibody (nAb) responses to both SARS-CoV-2 and SARS-CoV-1, in contrast to human infection or vaccination where responses are typically SARS-CoV-2-specific. Furthermore, the macaque nAbs are equally effective against SARS-CoV-2 variants of concern. Structural studies show that different immunodominant sites are targeted by the two primate species. Human antibodies generally target epitopes strongly overlapping the ACE2 receptor binding site (RBS), whereas the macaque antibodies recognize a relatively conserved region proximal to the RBS that represents another potential pan-SARS-related virus site rarely targeted by human antibodies. B cell repertoire differences between the two primates appear to significantly influence the vaccine response and suggest care in the use of rhesus macaques in evaluation of vaccines to SARS-related viruses intended for human use.


2021 ◽  
Author(s):  
Carlos Baez-N ◽  
Ivan Rafael Quevedo ◽  
Susana López ◽  
Carlos Federico Arias ◽  
Pavel Isa

Viral gastroenteritis has a global distribution and represents a high risk for vulnerable population and children under 5 years because of acute diarrhea, fever and dehydration. Human astroviruses (HAstV) have been identified as the third most important cause of viral gastroenteritis in pediatric and immunocompromised patients. Furthermore, HAstV has been reported in biopsies taken from patients with encephalitis, meningitis and acute respiratory infection, yet it is not clear how the virus reaches these organs. In this work we tested the possibility that the released astrovirus particles could be associated with extracellular vesicles. Comparison between vesicles purified from astrovirus- and mock-infected cells showed that infection with HAstV Yuc8 enhances production of vesicles larger than 150 nm. These vesicles contain CD63 and Alix, two markers of vesicular structures. Some of the extracellular virus was found associated with vesicular membranes, and this association facilitates cell infection in the absence of trypsin activation and protects virions from neutralizing antibodies. Our findings suggest a new pathway for HAstV spread and might represent an explanation for the extraintestinal presence of some astrovirus strains.


mBio ◽  
2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Zachary A. Bornholdt ◽  
Esther Ndungo ◽  
Marnie L. Fusco ◽  
Shridhar Bale ◽  
Andrew I. Flyak ◽  
...  

ABSTRACT The filovirus surface glycoprotein (GP) mediates viral entry into host cells. Following viral internalization into endosomes, GP is cleaved by host cysteine proteases to expose a receptor-binding site (RBS) that is otherwise hidden from immune surveillance. Here, we present the crystal structure of proteolytically cleaved Ebola virus GP to a resolution of 3.3 Å. We use this structure in conjunction with functional analysis of a large panel of pseudotyped viruses bearing mutant GP proteins to map the Ebola virus GP endosomal RBS at molecular resolution. Our studies indicate that binding of GP to its endosomal receptor Niemann-Pick C1 occurs in two distinct stages: the initial electrostatic interactions are followed by specific interactions with a hydrophobic trough that is exposed on the endosomally cleaved GP 1 subunit. Finally, we demonstrate that monoclonal antibodies targeting the filovirus RBS neutralize all known filovirus GPs, making this conserved pocket a promising target for the development of panfilovirus therapeutics. IMPORTANCE Ebola virus uses its glycoprotein (GP) to enter new host cells. During entry, GP must be cleaved by human enzymes in order for receptor binding to occur. Here, we provide the crystal structure of the cleaved form of Ebola virus GP. We demonstrate that cleavage exposes a site at the top of GP and that this site binds the critical domain C of the receptor, termed Niemann-Pick C1 (NPC1). We perform mutagenesis to find parts of the site essential for binding NPC1 and map distinct roles for an upper, charged crest and lower, hydrophobic trough in cleaved GP. We find that this 3-dimensional site is conserved across the filovirus family and that antibody directed against this site is able to bind cleaved GP from every filovirus tested and neutralize viruses bearing those GPs.


2021 ◽  
pp. eabd6990
Author(s):  
Sang Il Kim ◽  
Jinsung Noh ◽  
Sujeong Kim ◽  
Younggeun Choi ◽  
Duck Kyun Yoo ◽  
...  

Stereotypic antibody clonotypes exist in healthy individuals and may provide protective immunity against viral infections by neutralization. We observed that 13 out of 17 patients with COVID-19 had stereotypic variable heavy chain (VH) antibody clonotypes directed against the receptor-binding domain (RBD) of SARS-CoV-2 spike protein. These antibody clonotypes were comprised of immunoglobulin heavy variable (IGHV)3-53 or IGHV3-66 and immunoglobulin heavy joining (IGHJ)6 genes. These clonotypes included IgM, IgG3, IgG1, IgA1, IgG2, and IgA2 subtypes and had minimal somatic mutations, which suggested swift class switching after SARS-CoV-2 infection. The different immunoglobulin heavy variable chains were paired with diverse light chains resulting in binding to the RBD of SARS-CoV-2 spike protein. Human antibodies specific for the RBD can neutralize SARS-CoV-2 by inhibiting entry into host cells. We observed that one of these stereotypic neutralizing antibodies could inhibit viral replication in vitro using a clinical isolate of SARS-CoV-2. We also found that these VH clonotypes existed in six out of 10 healthy individuals, with IgM isotypes predominating. These findings suggest that stereotypic clonotypes can develop de novo from naïve B cells and not from memory B cells established from prior exposure to similar viruses. The expeditious and stereotypic expansion of these clonotypes may have occurred in patients infected with SARS-CoV-2 because they were already present.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 628
Author(s):  
Aeron C. Hurt ◽  
Adam K. Wheatley

The emergence of SARS-CoV-2 and subsequent COVID-19 pandemic has resulted in a significant global public health burden, leading to an urgent need for effective therapeutic strategies. In this article, we review the role of SARS-CoV-2 neutralizing antibodies (nAbs) in the clinical management of COVID-19 and provide an overview of recent randomized controlled trial data evaluating nAbs in the ambulatory, hospitalized and prophylaxis settings. Two nAb cocktails (casirivimab/imdevimab and bamlanivimab/etesevimab) and one nAb monotherapy (bamlanivimab) have been granted Emergency Use Authorization by the US Food and Drug Administration for the treatment of ambulatory patients who have a high risk of progressing to severe disease, and the European Medicines Agency has similarly recommended both cocktails and bamlanivimab monotherapy for use in COVID-19 patients who do not require supplemental oxygen and who are at high risk of progressing to severe COVID-19. Efficacy of nAbs in hospitalized patients with COVID-19 has been varied, potentially highlighting the challenges of antiviral treatment in patients who have already progressed to severe disease. However, early data suggest a promising prophylactic role for nAbs in providing effective COVID-19 protection. We also review the risk of treatment-emergent antiviral resistant “escape” mutants and strategies to minimize their occurrence, discuss the susceptibility of newly emerging SARS-COV-2 variants to nAbs, as well as explore administration challenges and ways to improve patient access.


Sign in / Sign up

Export Citation Format

Share Document