scholarly journals Characterization of Human CD8 T Cell Responses in Dengue Virus-Infected Patients from India

2016 ◽  
Vol 90 (24) ◽  
pp. 11259-11278 ◽  
Author(s):  
Anmol Chandele ◽  
Jaturong Sewatanon ◽  
Sivaram Gunisetty ◽  
Mohit Singla ◽  
Nattawat Onlamoon ◽  
...  

ABSTRACT Epidemiological studies suggest that India has the largest number of dengue virus infection cases worldwide. However, there is minimal information about the immunological responses in these patients. CD8 T cells are important in dengue, because they have been implicated in both protection and immunopathology. Here, we provide a detailed analysis of HLA-DR + CD38 + and HLA-DR − CD38 + effector CD8 T cell subsets in dengue patients from India and Thailand. Both CD8 T cell subsets expanded and expressed markers indicative of antigen-driven proliferation, tissue homing, and cytotoxic effector functions, with the HLA-DR + CD38 + subset being the most striking in these effector qualities. The breadth of the dengue-specific CD8 T cell response was diverse, with NS3-specific cells being the most dominant. Interestingly, only a small fraction of these activated effector CD8 T cells produced gamma interferon (IFN-γ) when stimulated with dengue virus peptide pools. Transcriptomics revealed downregulation of key molecules involved in T cell receptor (TCR) signaling. Consistent with this, the majority of these CD8 T cells remained IFN-γ unresponsive even after TCR-dependent polyclonal stimulation (anti-CD3 plus anti-CD28) but produced IFN-γ by TCR-independent polyclonal stimulation (phorbol 12-myristate 13-acetate [PMA] plus ionomycin). Thus, the vast majority of these proliferating, highly differentiated effector CD8 T cells probably acquire TCR refractoriness at the time the patient is experiencing febrile illness that leads to IFN-γ unresponsiveness. Our studies open novel avenues for understanding the mechanisms that fine-tune the balance between CD8 T cell-mediated protective versus pathological effects in dengue. IMPORTANCE Dengue is becoming a global public health concern. Although CD8 T cells have been implicated both in protection and in the cytokine-mediated immunopathology of dengue, how the balance is maintained between these opposing functions remains unknown. We comprehensively characterized CD8 T cell subsets in dengue patients from India and Thailand and show that these cells expand massively and express phenotypes indicative of overwhelming antigenic stimulus and tissue homing/cytotoxic-effector functions but that a vast majority of them fail to produce IFN-γ in vitro . Interestingly, the cells were fully capable of producing the cytokine when stimulated in a T cell receptor (TCR)-independent manner but failed to do so in TCR-dependent stimulation. These results, together with transcriptomics, revealed that the vast majority of these CD8 T cells from dengue patients become cytokine unresponsive due to TCR signaling insufficiencies. These observations open novel avenues for understanding the mechanisms that fine-tune the balance between CD8-mediated protective versus pathological effects.

2013 ◽  
Vol 210 (3) ◽  
pp. 491-502 ◽  
Author(s):  
Shlomo Z. Ben-Sasson ◽  
Alison Hogg ◽  
Jane Hu-Li ◽  
Paul Wingfield ◽  
Xi Chen ◽  
...  

Here, we show that interleukin-1 (IL-1) enhances antigen-driven CD8 T cell responses. When administered to recipients of OT-I T cell receptor transgenic CD8 T cells specific for an ovalbumin (OVA) peptide, IL-1 results in an increase in the numbers of wild-type but not IL1R1−/− OT-I cells, particularly in spleen, liver, and lung, upon immunization with OVA and lipopolysaccharide. IL-1 administration also results in an enhancement in the frequency of antigen-specific cells that are granzyme B+, have cytotoxic activity, and/ or produce interferon γ (IFN-γ). Cells primed in the presence of IL-1 display enhanced expression of granzyme B and increased capacity to produce IFN-γ when rechallenged 2 mo after priming. In three in vivo models, IL-1 enhances the protective value of weak immunogens. Thus, IL-1 has a marked enhancing effect on antigen-specific CD8 T cell expansion, differentiation, migration to the periphery, and memory.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3085-3085
Author(s):  
Mark C. Lanasa ◽  
Marc C. Levesque ◽  
Sallie D. Allgood ◽  
Jon P. Gockerman ◽  
Karen Bond ◽  
...  

Abstract Background: Although most malignancies are associated with decreased numbers of circulating T cells, in CLL they are elevated 2 to 4 times normal. Rather than promoting an anti-tumor response, this increased population of T cells may contribute to a tumor microenvironment that fosters progression of the malignant clone. Immunocompetent individuals show a wide repertoire of antigen specificity in both CD4+ and CD8+ T cells, but the T cell repertoire is significantly restricted in CLL. This restriction of the T cell repertoire may be an important cause of infectious morbidity in patients with CLL. To better understand these T cell abnormalities, we enumerated T cell subsets and determined T cell receptor diversity in 18 untreated patients with CLL. Methods: T cell subsets were enumerated from peripheral blood using highly sensitive 6-color flow cytometry. The T cell repertoire was determined for 23 T cell receptor variable β chain families (TCRvβ) in purified CD4+ and CD8+ T cells. These T cell subsets were considered separately because differential restriction of the CD4+ and CD8+ subsets has been reported previously. A PCR-based spectratype assay was used to analyze the length distribution of the TCR complementarity-determining region 3 (CDR3). A limitation of prior reports using spectratype assays was that adequately complex statistical models did not exist to simultaneously analyze the highly diverse vβ families. We addressed this limitation by using a recently-developed statistical method for spectratype analysis (Bioinformatics. 21:3394–400). Briefly, for each vβ family, the divergence from an expected reference distribution was calculated. A divergence coefficient was determined for each vβ family, and the mean divergence of all 23 vβ families was calculated. This allowed for statistical comparisons among individual patients and specific vβ families. To our knowledge, we are the first group to apply this powerful methodology to the analysis of T cell repertoires in patients with CLL. Results: We found both the CD4+ and CD8+ subsets to be expanded (mean #/μL ± SD: 1134 ± 646 and 768 ± 716, respectively; reference normal CD4+ range 401–1532, CD8+ 152–838). The absolute number of CD4+ and CD8+ T cells was greater in patients with higher absolute CLL lymphocyte counts (p = 0.018, r2 = 0.30, and p = 0.23, r2 = 0.09, respectively, linear regression). The CD4:CD8 ratio was lower in IgVH unmutated subjects (mutated 2.6, umutated 1.7, p = 0.09, two-tailed t-test assuming unequal variances). Though prior reports have disagreed on whether CD4+ or CD8+ subsets show greater restriction of clonality, we observed striking clonal restriction of CD8+ but not CD4+ T cells (p < 1×10−7, 2 sided t-test assuming unequal variances). There was a trend toward greater restriction of the CD8+ subset among patients with IgVH unmutated and Zap70+ CLL, but there was no correlation with lymphocyte doubling time. Conclusions: In this cohort of 18 untreated patients with CLL, there was a greater proportional increase compared to reference standards of CD8+ versus CD4+ T cells. However, the increase in CD4+, but not CD8+, T cell numbers was significantly correlated to total CLL lymphocyte count. This observation suggests that expansion of the CD4+ T cell pool observed in CLL is proportional to leukemic burden. The restriction of TCRvβ was limited to CD8+ T cells and that this effect was independent of the size of the abnormal clone. Taken together, these findings suggest different mechanisms of dysregulation of CD4+ and CD8+ T cell subsets in CLL.


2007 ◽  
Vol 75 (5) ◽  
pp. 2244-2252 ◽  
Author(s):  
Patricia Ngai ◽  
Sarah McCormick ◽  
Cherrie Small ◽  
Xizhong Zhang ◽  
Anna Zganiacz ◽  
...  

ABSTRACT Gamma interferon (IFN-γ) is a key cytokine in host defense against intracellular mycobacterial infection. It has been believed that both CD4 and CD8 T cells are the primary sources of IFN-γ. However, the relative contributions of CD4 and CD8 T-cell subsets to IFN-γ production and the relationship between CD4 and CD8 T-cell activation have not been examined. By using a model of pulmonary mycobacterial infection and various immunodetection assays, we found that CD4 T cells mounted a much stronger IFN-γ response than CD8 T cells at various times after mycobacterial infection, and this pronounced IFN-γ production by CD4 T cells was attributed to both greater numbers of antigen-specific CD4 T cells and a greater IFN-γ secretion capacity of these cells. By using major histocompatibility complex class II-deficient or CD4-deficient mice, we found that the lack of CD4 T cells did not negatively affect primary or secondary CD8 T-cell IFN-γ responses. The CD8 T cells activated in the absence of CD4 T cells were capable of immune protection against secondary mycobacterial challenge. Our results suggest that, whereas both CD4 and CD8 T cells are capable of IFN-γ production, the former represent a much greater cellular source of IFN-γ. Moreover, during mycobacterial infection, CD8 T-cell IFN-γ responses and activation are independent of CD4 T-cell activation.


2021 ◽  
Author(s):  
Vladimir Laletin ◽  
Pierre-Louis Bernard ◽  
Montersino Camille ◽  
Yuji Yamanashi ◽  
Daniel Olive ◽  
...  

Targeting intracellular inhibiting proteins is a promising strategy to improve CD8+ T cell anti-tumor efficacy. DOK1 and DOK2 are CD8+ T cell inhibitory proteins that are targeted in this study in order to improve the activation and cytotoxic capacities of these cells. To evaluate the role of DOK-1 and DOK-2 depletion in physiology and effector function of T CD8+ lymphocyte and in cancer progression, a transgenic T cell receptor mouse model specific to melanoma antigen hgp100 (pmel-1 TCR Tg) was established. Depletion of both Dok1 and Dok2 did not affect the development, proliferation, mortality, activation and cytotoxic function of naive CD8+ T cells. However, after an in vitro pre-stimulation Dok1/Dok2 DKO CD8+ T cells had higher percentage of effector memory T cells and showed an increase in levels of pAKT and pERK upon TCR stimulation. Despite this improved TCR signaling, pre-stimulated Dok1/Dok2 DKO CD8+ T cells did not show any increase in their activation or cytotoxicity capacities against melanoma cell line expressing hgp100 in vitro. Altogether we demonstrate here a novel aspect of the negative regulation by DOK1 and DOK2 proteins in CD8+ T cells. In conclusion, DOK1 and DOK2 have an inhibitory role following long term T cell stimulations.


2021 ◽  
Vol 218 (7) ◽  
Author(s):  
Miwa Sasai ◽  
Ji Su Ma ◽  
Masaaki Okamoto ◽  
Kohei Nishino ◽  
Hikaru Nagaoka ◽  
...  

Because of their common signaling molecules, the main T cell receptor (TCR) signaling cascades in CD4+ and CD8+ T cells are considered qualitatively identical. Herein, we show that TCR signaling in CD8+ T cells is qualitatively different from that in CD4+ T cells, since CD8α ignites another cardinal signaling cascade involving phospholipase C β4 (PLCβ4). TCR-mediated responses were severely impaired in PLCβ4-deficient CD8+ T cells, whereas those in CD4+ T cells were intact. PLCβ4-deficient CD8+ T cells showed perturbed activation of peripheral TCR signaling pathways downstream of IP3 generation. Binding of PLCβ4 to the cytoplasmic tail of CD8α was important for CD8+ T cell activation. Furthermore, GNAQ interacted with PLCβ4, mediated double phosphorylation on threonine 886 and serine 890 positions of PLCβ4, and activated CD8+ T cells in a PLCβ4-dependent fashion. PLCβ4-deficient mice exhibited defective antiparasitic host defense and antitumor immune responses. Altogether, PLCβ4 differentiates TCR signaling in CD4+ and CD8+ T cells and selectively promotes CD8+ T cell–dependent adaptive immunity.


2006 ◽  
Vol 75 (3) ◽  
pp. 1154-1166 ◽  
Author(s):  
Laura H. Hogan ◽  
Dominic O. Co ◽  
Jozsef Karman ◽  
Erika Heninger ◽  
M. Suresh ◽  
...  

ABSTRACT The effect of secondary infections on CD4 T-cell-regulated chronic granulomatous inflammation is not well understood. Here, we have investigated the effect of an acute viral infection on the cellular composition and bacterial protection in Mycobacterium bovis strain bacille Calmette-Guérin (BCG)-induced granulomas using an immunocompetent and a partially immunodeficient murine model. Acute lymphocytic choriomeningitis virus (LCMV) coinfection of C57BL/6 mice led to substantial accumulation of gamma interferon (IFN-γ)-producing LCMV-specific T cells in liver granulomas and increased local IFN-γ. Despite traffic of activated T cells that resulted in a CD8 T-cell-dominated granuloma, the BCG liver organ load was unaltered from control levels. In OT-1 T-cell-receptor (TCR) transgenic mice, ovalbumin (OVA) immunization or LCMV coinfection of BCG-infected mice induced CD8 T-cell-dominated granulomas containing large numbers of non-BCG-specific activated T cells. The higher baseline BCG organ load in this CD8 TCR transgenic animal allowed us to demonstrate that OVA immunization and LCMV coinfection increased anti-BCG protection. The bacterial load remained substantially higher than in mice with a more complete TCR repertoire. Overall, the present study suggests that peripherally activated CD8 T cells can be recruited to chronic inflammatory sites, but their contribution to protective immunity is limited to conditions of underlying immunodeficiency.


2022 ◽  
Vol 12 ◽  
Author(s):  
Yufei Mo ◽  
Kelvin Kai-Wang To ◽  
Runhong Zhou ◽  
Li Liu ◽  
Tianyu Cao ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection results in rapid T lymphocytopenia and functional impairment of T cells. The underlying mechanism, however, remains incompletely understood. In this study, we focused on characterizing the phenotype and kinetics of T-cell subsets with mitochondrial dysfunction (MD) by multicolor flow cytometry and investigating the association between MD and T-cell functionality. While 73.9% of study subjects displayed clinical lymphocytopenia upon hospital admission, a significant reduction of CD4 or CD8 T-cell frequency was found in all asymptomatic, symptomatic, and convalescent cases. CD4 and CD8 T cells with increased MD were found in both asymptomatic and symptomatic patients within the first week of symptom onset. Lower proportion of memory CD8 T cell with MD was found in severe patients than in mild ones at the stage of disease progression. Critically, the frequency of T cells with MD in symptomatic patients was preferentially associated with CD4 T-cell loss and CD8 T-cell hyperactivation, respectively. Patients bearing effector memory CD4 and CD8 T cells with the phenotype of high MD exhibited poorer T-cell responses upon either phorbol 12-myristate-13-acetate (PMA)/ionomycin or SARS-CoV-2 peptide stimulation than those with low MD. Our findings demonstrated an MD-associated mechanism underlying SARS-CoV-2-induced T lymphocytopenia and functional impairment during the acute phase of infection.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A705-A705
Author(s):  
Shuyang Qin ◽  
Booyeon Han ◽  
Alexander Chacon ◽  
Alexa Melucci ◽  
Alyssa Williams ◽  
...  

BackgroundDespite recent advancements in systemic therapy, only a minority of metastatic patients develop meaningful clinical responses to immune checkpoint inhibitors. Inherent genetic instability of melanoma generates genomically and microenvironmentally distinct metastases. These different tumor microenvironments (TMEs) contain numerous T cell suppression mechanisms, such as upregulation of the PD-1/PD-L1 exhaustion pathway. However, as synchronous metastases share one host immune system, intertumoral heterogeneity may result in increasing cross-talk between metastases that impairs systemic antitumor immunity and promotes PD-1 immunotherapy resistance.MethodsYUMM 1.7 (less immunogenic) and YUMMER 1.7 (more immunogenic cell line derived from YUMM following UVB irradiation) melanoma cell lines were simultaneously injected into opposite flanks of the same mice as a model of synchronous melanoma. We assessed tumor growth in wildtype, interferon-gamma (IFN-γ) knockout, and CD8-depleted mice as well as in response to PD-1 inhibitor. We characterized the TME with flow cytometry and performed TCR sequencing on tumor-infiltrating CD8 T cells.ResultsDistinct TMEs were observed for YUMM and YUMMER tumors simultaneously grown in the same mouse. The presence of the less immunogenic YUMM tumor allows the more immunogenic YUMMER tumors to escape IFN-γ and CD8 T cell-mediated rejection, despite abundant tumor-infiltrating, clonally expanded CD8 T cells. Identical immunodominant CD8 T cell clones were found in both YUMM and YUMMER tumors within the same mouse. Synchronous YUMMER-infiltrating CD8 T cells exhibit suppressed phenotypes, including increased persistence of surface PD-1 and decreased surface CD107a expressions. Simultaneously, these synchronous YUMMER tumors additionally upregulate macrophage surface PD-L1 expression, which potentially contributes to tumor immune escape. Lastly, synchronous YUMMER tumors become resistant to PD-1 inhibition, in direct contrast to control YUMMER tumors.ConclusionsIn a host with multiple melanoma lesions, immunogenicity of all tumors contribute to the systemic antitumor immune response. We show that two synchronous tumors with synonymous mutations (<40%), as is the case with metastatic patients, lead to skewed CD8 T cell expansion of the same clones in both tumors. The presence of a less immunogenic tumor prevents CD8 and IFN-γ mediated rejection of the more immunogenic tumor. Furthermore, CD8 T cells in the more immunogenic tumor exhibit decreased effector function and increased resistance to PD-1 blockade, as tumor-infiltrating macrophages concurrently become more immunosuppressive. These results are highly suggestive of a “reverse abscopal effect,” by which immunologically “cold” tumors generate systemic immunosuppression that facilitate PD-1 immunotherapy resistance and immune escape of all other tumors in synchronous metastatic melanoma patients.AcknowledgementsWe would like to thank Dr. Marcus Bosenberg from the Department of Dermatology at Yale University for kindly gifting us with the YUMMER 1.7 murine melanoma cell line.Ethics ApprovalAnimal experiments were approved by the University Committee on Animal Resources and performed in accordance with University of Rochester approved guidelines.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Alexandria C Wells ◽  
Keith A Daniels ◽  
Constance C Angelou ◽  
Eric Fagerberg ◽  
Amy S Burnside ◽  
...  

The differentiation of naive CD8 T cells into effector cytotoxic T lymphocytes upon antigen stimulation is necessary for successful antiviral, and antitumor immune responses. Here, using a mouse model, we describe a dual role for the let-7 microRNAs in the regulation of CD8 T cell responses, where maintenance of the naive phenotype in CD8 T cells requires high levels of let-7 expression, while generation of cytotoxic T lymphocytes depends upon T cell receptor-mediated let-7 downregulation. Decrease of let-7 expression in activated T cells enhances clonal expansion and the acquisition of effector function through derepression of the let-7 targets, including Myc and Eomesodermin. Ultimately, we have identified a novel let-7-mediated mechanism, which acts as a molecular brake controlling the magnitude of CD8 T cell responses.


2002 ◽  
Vol 195 (6) ◽  
pp. 695-704 ◽  
Author(s):  
Michel Gilliet ◽  
Yong-Jun Liu

Although CD8 T cell–mediated immunosuppression has been a well-known phenomenon during the last three decades, the nature of primary CD8 T suppressor cells and the mechanism underlying their generation remain enigmatic. We demonstrated that naive CD8 T cells primed with allogeneic CD40 ligand–activated plasmacytoid dendritic cells (DC)2 differentiated into CD8 T cells that displayed poor secondary proliferative and cytolytic responses. By contrast, naive CD8 T cells primed with allogeneic CD40 ligand–activated monocyte-derived DCs (DC1) differentiated into CD8 T cells, which proliferated to secondary stimulation and killed allogeneic target cells. Unlike DC1-primed CD8 T cells that produced large amounts of interferon (IFN)-γ upon restimulation, DC2-primed CD8 T cells produced significant amounts of interleukin (IL)-10, low IFN-γ, and no IL-4, IL-5, nor transforming growth factor (TGF)-β. The addition of anti–IL-10–neutralizing monoclonal antibodies during DC2 and CD8 T cell coculture, completely blocked the generation of IL-10–producing anergic CD8 T cells. IL-10–producing CD8 T cells strongly inhibit the allospecific proliferation of naive CD8 T cells to monocytes, and mature and immature DCs. This inhibition was mediated by IL-10, but not by TGF-β. IL-10–producing CD8 T cells could inhibit the bystander proliferation of naive CD8 T cells, provided that they were restimulated nearby to produce IL-10. IL-10–producing CD8 T cells could not inhibit the proliferation of DC1-preactivated effector T cells. This study demonstrates that IL-10–producing CD8 T cells are regulatory T cells, which provides a cellular basis for the phenomenon of CD8 T cell–mediated immunosuppression and suggests a role for plasmacytoid DC2 in immunological tolerance.


Sign in / Sign up

Export Citation Format

Share Document