Long noncoding RNA MIR2187HG suppresses TBK1-mediated antiviral signaling through deriving miR-2187-3p in teleost fish

2021 ◽  
Author(s):  
Renjie Chang ◽  
Weiwei Zheng ◽  
Yuena Sun ◽  
Shang Geng ◽  
Tianjun Xu

Long non-coding RNAs (lncRNAs) function as microregulatory factors that influence gene expression after a variety of pathogenic infection, which have been extensively studied in the past few years. Although less attention has been paid to lncRNAs in lower vertebrates than in mammals, current studies reveals that lncRNAs plays a vital role in fish stimulated by pathogens. Here, we discovered a new lncRNA, termed as MIR2187HG, which can function as a precursor of a small RNA miR-2187-3p with regulatory functions in miiuy croaker ( Miichthys miiuy ). Upon Siniperca chuatsi rhabdovirus (SCRV) virus infection, the expression levels of MIR2187HG were remarkably enhanced. Elevated MIR2187HG expression can act as a pivotally negative regulator that participates in the innate immune response of teleost fish to inhibit the intracellular TANK-binding kinase 1 (TBK1)-mediated antiviral signaling pathways, which can effectively avoid excessive immunity. In addition, we found that the SCRV virus could also utilize MIR2187HG to enhance its own number. Our results not only provide evidence regarding the involvement of the lncRNAs in response to anti-viruses in fish, but also broaden our understanding of the function of lncRNAs as precursor miRNA in teleost fish for the first time. Importance: SCRV infection upregulates MIR2187HG levels, which in turn suppresses SCRV-triggered type I interferon production, thus promoting viral replication in miiuy croaker. Notably, MIR2187HG regulates the release of miR-2187-3p, and TBK1 is a target of miR-2187-3p. MIR2187HG could obtain the function from miR-2187-3p to inhibit TBK1 expression and subsequently modulate TBK1-mediated NF-κB and IRF3 signaling. The collective results suggest that the novel regulation mechanism of TBK1-mediated antiviral response during RNA viral infection was regulated by MIR2187HG. Therefore, a new regulation mechanism for lncRNAs to regulate antiviral immune responses in fish is proposed.

2021 ◽  
Vol 11 ◽  
Author(s):  
Renjie Chang ◽  
Qing Chu ◽  
Weiwei Zheng ◽  
Lei Zhang ◽  
Tianjun Xu

As is known to all, the production of type I interferon (IFN) plays pivotal roles in host innate antiviral immunity, and its moderate production play a positive role in promoting the activation of host innate antiviral immune response. However, the virus will establish a persistent infection model by interfering with the production of IFN, thereby evading the organism inherent antiviral immune response. Therefore, it is of great necessity to research the underlying regulatory mechanisms of type I IFN appropriate production under viral invasion. In this study, we report that a Sp1–responsive miR-15b plays a negative role in siniperca chuatsi rhabdovirus (SCRV)-triggered antiviral response in teleost fish. We found that SCRV could dramatically upregulate miiuy croaker miR-15b expression. Enhanced miR-15b could negatively regulate SCRV-triggered antiviral genes and inflammatory cytokines production by targeting TANK-binding kinase 1 (TBK1), thereby accelerating viral replication. Importantly, we found that miR-15b feedback regulates antiviral innate immune response through NF-κB and IRF3 signaling pathways. These findings highlight that miR-15b plays a crucial role in regulating virus–host interactions, which outlines a new regulation mechanism of fish’s innate immune responses.


2021 ◽  
Author(s):  
Qing Chu ◽  
Weiwei Zheng ◽  
Hui Su ◽  
Lei Zhang ◽  
Renjie Chang ◽  
...  

Circular RNAs (circRNAs) represent a class of widespread, diverse, and covalently closed circRNAs that function as microRNA (miRNA) sponges and crucial regulators of gene expression in mammals. However, the regulation and function of circRNAs in lower vertebrates are still unknown. Here, we first discover a highly conserved circRNA termed circRasGEF1B, which displays a high conservation from mammals to fish and serves as key regulator in eliciting antiviral immunity in teleost fish. Results indicate that circRasGEF1B was highly expressed in Siniperca chuatsi rhabdovirus-infected tissues and cells. Functionally, miR-21-3p could inhibit cellular antiviral responses significantly, whereas circRasGEF1B counteract the effects of miR-21-3p. In mechanism, the results demonstrate that circRasGEF1B acts as a competing endogenous RNA (ceRNA) of miR-21-3p to relieve the repressive effect of miR-21-3p on its target MITA, then enhance the innate antiviral responses. Our results not only provide a novel insight into the functions of circRNAs in lower vertebrates, but broaden our understanding of circRNAs in viral infection. IMPORTANCE Siniperca chuatsi rhabdovirus (SCRV) is a typical fish RNA rhabdovirus, which is one of the most significant viral pathogens in teleost fish and can cause severe hemorrhagic septicemia in freshwater and marine fishes. Here, we discovered a highly conserved circRNAs called circRasGEF1B, which acts as a key regulator for innate antiviral responses upon SCRV infection. circRasGEF1B acts as an endogenous sponge of miR-21-3p that downregulates miR-21-3p expression levels. circRasGEF1B is able to bind to miR-21-3p directly and regulates MITA expression. To our knowledge, this report is the first to characterize circRNA–miRNA regulatory networks that exist in lower vertebrates.


2021 ◽  
Vol 17 (3) ◽  
pp. e1009366
Author(s):  
Wei Zhang ◽  
Qi Wang ◽  
Fan Yang ◽  
Zixiang Zhu ◽  
Yueyue Duan ◽  
...  

The negative regulation of antiviral immune responses is essential for the host to maintain homeostasis. Jumonji domain-containing protein 6 (JMJD6) was previously identified with a number of functions during RNA virus infection. Upon viral RNA recognition, retinoic acid-inducible gene-I-like receptors (RLRs) physically interact with the mitochondrial antiviral signaling protein (MAVS) and activate TANK-binding kinase 1 (TBK1) to induce type-I interferon (IFN-I) production. Here, JMJD6 was demonstrated to reduce type-I interferon (IFN-I) production in response to cytosolic poly (I:C) and RNA virus infections, including Sendai virus (SeV) and Vesicular stomatitis virus (VSV). Genetic inactivation of JMJD6 enhanced IFN-I production and impaired viral replication. Our unbiased proteomic screen demonstrated JMJD6 contributes to IRF3 K48 ubiquitination degradation in an RNF5-dependent manner. Mice with gene deletion of JMJD6 through piggyBac transposon-mediated gene transfer showed increased VSV-triggered IFN-I production and reduced susceptibility to the virus. These findings classify JMJD6 as a negative regulator of the host’s innate immune responses to cytosolic viral RNA.


2021 ◽  
Vol 17 (3) ◽  
pp. e1009438
Author(s):  
Weiwei Zheng ◽  
Qing Chu ◽  
Liyuan Yang ◽  
Lingping Sun ◽  
Tianjun Xu

Circular RNAs (circRNAs) represent a class of widespread and diverse covalently closed circular endogenous RNAs that exert crucial functions in regulating gene expression in mammals. However, the function and regulation mechanism of circRNAs in lower vertebrates are still unknown. Here, we discovered a novel circRNA derived from Deltex E3 ubiquitin ligase 1 (Dtx1) gene, namely, circDtx1, which was related to the antiviral responses in teleost fish. Results indicated that circDtx1 played essential roles in host antiviral immunity and inhibition of SCRV replication. Our study also found a microRNA miR-15a-5p, which could inhibit antiviral immune response and promote viral replication by targeting TRIF. Moreover, we also found that the antiviral effect inhibited by miR-15a-5p could be reversed with the circDtx1. In mechanism, our data revealed that circDtx1 was a competing endogenous RNA (ceRNA) of TRIF by sponging miR-15a-5p, leading to activation of the NF-κB/IRF3 pathway, and then enhancing the innate antiviral responses. Our results indicated that circRNAs played a regulatory role in immune responses in teleost fish.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wenya Gao ◽  
Renjie Chang ◽  
Yuena Sun ◽  
Tianjun Xu

The innate immune organs and cells detect the invasion of pathogenic microorganisms, which trigger the innate immune response. A proper immune response can protect the organisms from pathogen invasion. However, excessive immunity can destroy immune homeostasis, leading to uncontrolled inflammation or pathogen transmission. Evidence shows that the miRNA-mediated immune regulatory network in mammals has had a significant impact, but the antibacterial and antiviral responses involved in miRNAs need to be further studied in lower vertebrates. Here, we report that miR-2187 as a negative regulator playing a critical role in the antiviral and antibacterial response of miiuy croaker. We find that pathogens such as Vibrio anguillarum and Siniperca chuatsi rhabdovirus (SCRV) can up-regulate the expression of miR-2187. Elevated miR-2187 is capable of reducing the production of inflammatory factors and antiviral genes by targeting TRAF6, thereby avoiding excessive inflammatory response. Furthermore, we proved that miR-2187 modulates innate immunity through TRAF6-mediated NF-κB and IRF3 signaling pathways. The above results indicate that miR-2187 acts as an immune inhibitor involved in host antibacterial and antiviral responses, thus enriching the immune regulatory network of the interaction between host and pathogen in lower vertebrates.


Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1085
Author(s):  
Shailendra Kumar Dhar Dwivedi ◽  
Geeta Rao ◽  
Anindya Dey ◽  
Priyabrata Mukherjee ◽  
Jonathan D. Wren ◽  
...  

Gynecologic malignancies, which include cancers of the cervix, ovary, uterus, vulva, vagina, and fallopian tube, are among the leading causes of female mortality worldwide, with the most prevalent being endometrial, ovarian, and cervical cancer. Gynecologic malignancies are complex, heterogeneous diseases, and despite extensive research efforts, the molecular mechanisms underlying their development and pathology remain largely unclear. Currently, mechanistic and therapeutic research in cancer is largely focused on protein targets that are encoded by about 1% of the human genome. Our current understanding of 99% of the genome, which includes noncoding RNA, is limited. The discovery of tens of thousands of noncoding RNAs (ncRNAs), possessing either structural or regulatory functions, has fundamentally altered our understanding of genetics, physiology, pathophysiology, and disease treatment as they relate to gynecologic malignancies. In recent years, it has become clear that ncRNAs are relatively stable, and can serve as biomarkers for cancer diagnosis and prognosis, as well as guide therapy choices. Here we discuss the role of small non-coding RNAs, i.e., microRNAs (miRs), P-Element induced wimpy testis interacting (PIWI) RNAs (piRNAs), and tRNA-derived small RNAs in gynecological malignancies, specifically focusing on ovarian, endometrial, and cervical cancer.


2021 ◽  
pp. 114436
Author(s):  
Sai Ma ◽  
Anli Liu ◽  
Xiang Hu ◽  
Qi Feng ◽  
Yanqi Zhang ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1615
Author(s):  
Zhongwei Zhang ◽  
Yosuke Kurashima

It is well known that mast cells (MCs) initiate type I allergic reactions and inflammation in a quick response to the various stimulants, including—but not limited to—allergens, pathogen-associated molecular patterns (PAMPs), and damage-associated molecular patterns (DAMPs). MCs highly express receptors of these ligands and proteases (e.g., tryptase, chymase) and cytokines (TNF), and other granular components (e.g., histamine and serotonin) and aggravate the allergic reaction and inflammation. On the other hand, accumulated evidence has revealed that MCs also possess immune-regulatory functions, suppressing chronic inflammation and allergic reactions on some occasions. IL-2 and IL-10 released from MCs inhibit excessive immune responses. Recently, it has been revealed that allergen immunotherapy modulates the function of MCs from their allergic function to their regulatory function to suppress allergic reactions. This evidence suggests the possibility that manipulation of MCs functions will result in a novel approach to the treatment of various MCs-mediated diseases.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Weinan Qiu ◽  
Qingyang Zhang ◽  
Rui Zhang ◽  
Yangxu Lu ◽  
Xin Wang ◽  
...  

AbstractDouble-stranded RNA (dsRNA) is a virus-encoded signature capable of triggering intracellular Rig-like receptors (RLR) to activate antiviral signaling, but whether intercellular dsRNA structural reshaping mediated by the N6-methyladenosine (m6A) modification modulates this process remains largely unknown. Here, we show that, in response to infection by the RNA virus Vesicular Stomatitis Virus (VSV), the m6A methyltransferase METTL3 translocates into the cytoplasm to increase m6A modification on virus-derived transcripts and decrease viral dsRNA formation, thereby reducing virus-sensing efficacy by RLRs such as RIG-I and MDA5 and dampening antiviral immune signaling. Meanwhile, the genetic ablation of METTL3 in monocyte or hepatocyte causes enhanced type I IFN expression and accelerates VSV clearance. Our findings thus implicate METTL3-mediated m6A RNA modification on viral RNAs as a negative regulator for innate sensing pathways of dsRNA, and also hint METTL3 as a potential therapeutic target for the modulation of anti-viral immunity.


Sign in / Sign up

Export Citation Format

Share Document