scholarly journals Small Non-Coding-RNA in Gynecological Malignancies

Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1085
Author(s):  
Shailendra Kumar Dhar Dwivedi ◽  
Geeta Rao ◽  
Anindya Dey ◽  
Priyabrata Mukherjee ◽  
Jonathan D. Wren ◽  
...  

Gynecologic malignancies, which include cancers of the cervix, ovary, uterus, vulva, vagina, and fallopian tube, are among the leading causes of female mortality worldwide, with the most prevalent being endometrial, ovarian, and cervical cancer. Gynecologic malignancies are complex, heterogeneous diseases, and despite extensive research efforts, the molecular mechanisms underlying their development and pathology remain largely unclear. Currently, mechanistic and therapeutic research in cancer is largely focused on protein targets that are encoded by about 1% of the human genome. Our current understanding of 99% of the genome, which includes noncoding RNA, is limited. The discovery of tens of thousands of noncoding RNAs (ncRNAs), possessing either structural or regulatory functions, has fundamentally altered our understanding of genetics, physiology, pathophysiology, and disease treatment as they relate to gynecologic malignancies. In recent years, it has become clear that ncRNAs are relatively stable, and can serve as biomarkers for cancer diagnosis and prognosis, as well as guide therapy choices. Here we discuss the role of small non-coding RNAs, i.e., microRNAs (miRs), P-Element induced wimpy testis interacting (PIWI) RNAs (piRNAs), and tRNA-derived small RNAs in gynecological malignancies, specifically focusing on ovarian, endometrial, and cervical cancer.

2021 ◽  
Author(s):  
hafiza sobia ramzan ◽  
Kashif Aziz Ahmad

Background: Osteoarthritis (OA) is a common disease of the joints among old populace until today. The treatment possibilities and roles of miRNA and long non-coding RNA (lncRNA) in therapy of OA has previously been explored. However, the functional roles of Long noncoding RNA KCNQ1OT1 and miRNA let-7a-5p on Osteoarthritis development and progression remains unclear. This study aimed at investigating the influence of KCNQ1OT1 on let-7a-5p in moderation of OA development and advancement. Materials and Methods: RT-qPCR examined expression of KCNQ1OT1and let-7a-5p in cultured human primary chondrocyte cell lines. Cell transfection overexpressed or knocked down the genes and CCK-8 assay measured cell viability in the proliferation biomarkers Ki87 and PCNA. While caspase-8 and caspase-3 activity determined rate of apoptosis. Furthermore, luciferase assay analyzed the luciferase activity and western blotting analysis determined the protein expression of KCNQ1OT1 and let-7a-5p in proliferation and apoptosis biomarkers. Results: The results demonstrated that KCNQ1OT1 is upregulated in OA-mimic cells and promotes the cell viability. KCNQ1OT1 knockdown suppresses cell viability of OA cells. Furthermore KCNQ1OT1 directly binds the 3'-UTR of let-7a-5p to negatively regulate let-7a-5p expression and OA progression. While upregulated let-7a-5p abolishes the proliferation effect of KCNQ1OT1 in OA cells. Conclusion: In summary, our study provides further insights into the underlying molecular mechanisms of KCNQ1OT1 and let-7a-5p suggesting a novel therapeutic approach to OA


2020 ◽  
Vol 134 (7) ◽  
pp. 791-805 ◽  
Author(s):  
Jinhui Lü ◽  
Qian Zhao ◽  
Xin Ding ◽  
Yuefan Guo ◽  
Yuan Li ◽  
...  

Abstract The molecular mechanisms governing the secretion of the non-coding genome are poorly understood. We show herein that cyclin D1, the regulatory subunit of the cyclin-dependent kinase that drives cell-cycle progression, governs the secretion and relative proportion of secreted non-coding RNA subtypes (miRNA, rRNA, tRNA, CDBox, scRNA, HAcaBox. scaRNA, piRNA) in human breast cancer. Cyclin D1 induced the secretion of miRNA governing the tumor immune response and oncogenic miRNAs. miR-21 and miR-93, which bind Toll-Like Receptor 8 to trigger a pro-metastatic inflammatory response, represented >85% of the cyclin D1-induced secreted miRNA transcripts. Furthermore, cyclin D1 regulated secretion of the P-element Induced WImpy testis (PIWI)-interacting RNAs (piRNAs) including piR-016658 and piR-016975 that governed stem cell expansion, and increased the abundance of the PIWI member of the Argonaute family, piwil2 in ERα positive breast cancer. The cyclin D1-mediated secretion of pro-tumorigenic immuno-miRs and piRNAs may contribute to tumor initiation and progression.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S90-S90
Author(s):  
Zheng Kuai ◽  
Meiting Chen ◽  
yang yu ◽  
Fan Yang ◽  
chunxiang Zhang

Abstract Aging is the inevitable, irreversible decline in function on the cellular and organ level leading to increased incidence of the most frequent diseases such as cancer and cardiovascular disease, that occurs over time. whereas the molecular mechanisms of senescence remain largely unknown. Here we identified that a novel long noncoding RNA, Morrbid was significantly decreased in different organs of aged mice, such as heart, liver, spleen, lung, kidney and brain. Interestingly, the telomeres length of Morrbid KO mice were significantly shorted than the WT mice at the same age. We also found that Morrbid was steeply decreased in a natural mouse cardiac myocyte senescence model. The senescence of mouse cardiac myocytes was effectively attenuated by Morrbid over-expression shown by the decreased β-galactosidase staining, increased telomere activity, decreased production of ROS and decreased cell apoptosis, but was enhanced by Morrbid knockdown. The results suggest that Morrbid is a critical regulator in senescence and could be used as a novel diagnostic biomarker for it, and a new therapeutic target for diverse diseases.


Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1245 ◽  
Author(s):  
Xiao-Zhen Zhang ◽  
Hao Liu ◽  
Su-Ren Chen

Long non-coding RNA (lncRNA), which is a kind of noncoding RNA, is generally characterized as being more than 200 nucleotide transcripts in length. LncRNAs exhibit many biological activities, including, but not limited to, cancer development. In this review, a search of the PubMed database was performed to identify relevant studies published in English. The term “lncRNA or long non-coding RNA” was combined with a range of search terms related to the core focus of the review: mechanism, structure, regulation, and cancer. The eligibility of the retrieved studies was mainly based on the abstract. The decision as to whether or not the study was included in this review was made after a careful assessment of its content. The reference lists were also checked to identify any other study that could be relevant to this review. We first summarized the molecular mechanisms of lncRNAs in tumorigenesis, including competing endogenous RNA (ceRNA) mechanisms, epigenetic regulation, decoy and scaffold mechanisms, mRNA and protein stability regulation, transcriptional and translational regulation, miRNA processing regulation, and the architectural role of lncRNAs, which will help a broad audience better understand how lncRNAs work in cancer. Second, we introduced recent studies to elucidate the structure of lncRNAs, as there is a link between lncRNA structure and function and visualizing the architectural domains of lncRNAs is vital to understanding their function. Third, we explored emerging evidence for regulators of lncRNA expression, lncRNA turnover, and lncRNA modifications (including 5-methylcytidine, N6-methyladenosine, and adenosine to inosine editing), highlighting the dynamics of lncRNAs. Finally, we used autophagy in cancer as an example to interpret the diverse mechanisms of lncRNAs and introduced clinical trials of lncRNA-based cancer therapies.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Shuying Chen ◽  
Xiaoyi Yang ◽  
Chengxuan Yu ◽  
Wenhan Zhou ◽  
Qiuyi Xia ◽  
...  

Cervical cancer is the fourth most common cancer among females worldwide. In spite of advances in detection and treatment, it is still one of the most dangerous gynecological malignancies in the world, especially in developing countries, and seriously threatens human health. Circular RNA (circRNA) is a special new type of endogenous noncoding RNA discovered recently. They form a covalently closed continuous loop and are specifically expressed in the eukaryotic transcriptome. With further understanding of circular RNA, a large number of studies have determined the key regulatory role of circRNA in a variety of diseases, especially cancer (including cervical cancer, liver cancer, and lung cancer). In addition, it has also been found that the abnormal expression of circRNA is related to its pathological characteristics in cervical cancer tissue, which can be used as a potential indicator for early screening and diagnosis of cervical cancer, targeted therapy, and prognosis prediction. This article summarizes the recent research achievements of circRNAs in cervical cancer. We briefly described the abnormal expression of circRNA in cervical cancer and discussed the involvement of circRNA in the occurrence process of cervical cancer by regulating cell proliferation, migration, invasion, and apoptosis. We believe that circRNA has potential value as a biomarker in the diagnosis and prognosis of cervical cancer.


2021 ◽  
Vol 22 (10) ◽  
pp. 5348
Author(s):  
Pei-Fang Hsieh ◽  
Cheng-Chia Yu ◽  
Pei-Ming Chu ◽  
Pei-Ling Hsieh

Long non-coding RNAs (lncRNAs) regulate a diverse array of cellular processes at the transcriptional, post-transcriptional, translational, and post-translational levels. Accumulating evidence suggests that lncRNA MEG3 exerts a large repertoire of regulatory functions in cellular stemness. This review focuses on the molecular mechanisms by which lncRNA MEG3 functions as a signal, scaffold, guide, and decoy for multi-lineage differentiation and even cancer progression. The role of MEG3 in various types of stem cells and cancer stem cells is discussed. Here, we provide an overview of the functional versatility of lncRNA MEG3 in modulating pluripotency, differentiation, and cancer stemness.


2021 ◽  
Vol 30 (3) ◽  
pp. 135-141
Author(s):  
Shymaa E. Ayoub ◽  
Tarek I. Ahmed ◽  
Amal Amin

Background: Ulcerative colitis (UC) is a chronic progressive inflammatory bowel disease, many long non coding RNA (lncRNAs) have been studied to have a role in the pathogenesis of Ulcerative colitis. Objective: is to evaluate expression level of long noncoding RNA PVT1 in ulcerative colitis and its association with the severity of the disease. Methodology: Sixty ulcerative colitis patients and 60 subjects were enrolled as controls. LNCRNA PVT1 relative expression level was tested using miScript SYBR Green PCR Kit. Results: Results showed significant differences between the patients with ulcerative colitis and controls as regard the median of the relative expression level of LNC PVT1 (P<0.0001). Also, there were positive significant correlations between the expression level of LNC PVT1 and AST(r=0.398, p=0.002), WBC(r=0.473, p<0.0001) in UC patients. The ROC curve analysis of LNC PVT1 revealed; LNC PVT1; AUC=0.784, P<0.0001, cut off point 1.06, sensitivity 73.3%, specificity 83.3%. Conclusion: Serum Lnc PVT1 could be used as a potential biomarker for UC diagnosis and prognosis


2020 ◽  
Vol 21 (24) ◽  
pp. 9742
Author(s):  
Miguel Ángel Cáceres-Durán ◽  
Ândrea Ribeiro-dos-Santos ◽  
Amanda Ferreira Vidal

Cervical cancer (CC) continues to be one of the leading causes of death for women across the world. Although it has been determined that papillomavirus infection is one of the main causes of the etiology of the disease, genetic and epigenetic factors are also required for its progression. Among the epigenetic factors are included the long noncoding RNAs (lncRNAs), transcripts of more than 200 nucleotides (nt) that generally do not code for proteins and have been associated with diverse functions such as the regulation of transcription, translation, RNA metabolism, as well as stem cell maintenance and differentiation, cell autophagy and apoptosis. Recently, studies have begun to characterize the aberrant regulation of lncRNAs in CC cells and tissues, including Homeobox transcript antisense RNA (HOTAIR), H19, Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), Cervical Carcinoma High-Expressed 1 (CCHE1), Antisense noncoding RNA in the inhibitors of cyclin-dependent kinase 4 (ANRIL), Growth arrest special 5 (GAS5) and Plasmacytoma variant translocation 1 (PVT1). They have been associated with several disease-related processes such as cell growth, cell proliferation, cell survival, metastasis and invasion as well as therapeutic resistance, and are novel potential biomarkers for diagnosis and prognosis in CC. In this review, we summarize the current literature regarding the knowledge we have about the roles and mechanisms of the lncRNAs in cervical neoplasia.


2020 ◽  
Vol 27 ◽  
Author(s):  
Ramarao Malla ◽  
Mohammad Amjad Kamal

: Cervical cancer (CC) is the fourth leading cancer in women in the age group 15-44 globally. Experimental as well as epidemiological studies identified that type16 and 18 HPV cause 70% of precancerous cervical lesions as well as cervical cancer worldwide by bringing about genetic as well as epigenetic changes in the host genome. The insertion of the HPV genome triggers various defense mechanisms including the silencing of tumor suppressor genes as well as activation of oncogenes associated with cancer metastatic pathway. E6 and E7 are small oncoproteins consisting of 150 and 100 amino acids respectively. These oncoproteins affect the regulation of the host cell cycle by interfering with p53 and pRb. Further these oncoproteins adversely affect the normal functions of the host cell by binding to their signaling proteins. Recent studies demonstrated that E6 and E7 oncoproteins are potential targets for CC. Therefore, this review discusses the role of E6 and E7 oncoproteins in metastasis and drug resistance as well as their regulation, early oncogene mediated signaling pathways. This review also uncovers the recent updates on molecular mechanisms of E6 and E7 mediated phytotherapy, gene therapy, immune therapy, and vaccine strategies as well as diagnosis through precision testing. Therefore, understanding the potential role of E6/E7 in metastasis and drug resistance along with targeted treatment, vaccine, and precision diagnostic strategies could be useful for the prevention and treatment of cervical cancer.


Sign in / Sign up

Export Citation Format

Share Document