scholarly journals A Higher Frequency of NKG2A+than of NKG2A−NK Cells Responds to Autologous HIV-Infected CD4 Cells irrespective of Whether or Not They Coexpress KIR3DL1

2015 ◽  
Vol 89 (19) ◽  
pp. 9909-9919 ◽  
Author(s):  
Irene Lisovsky ◽  
Gamze Isitman ◽  
Rujun Song ◽  
Sandrina DaFonseca ◽  
Alexandra Tremblay-McLean ◽  
...  

ABSTRACTEpidemiological and functional studies implicate NK cells in HIV control. However, there is little information available on which NK cell populations, as defined by the inhibitory NK cell receptors (iNKRs) they express, respond to autologous HIV-infected CD4+(iCD4) T cells. NK cells acquire antiviral functions through education, which requires signals received from iNKRs, such as NKG2A and KIR3DL1 (here, 3DL1), engaging their ligands. NKG2A interacts with HLA-E, and 3DL1 interacts with HLA-A/B antigens expressing the Bw4 epitope. HIV-infected cells downregulate HLA-A/B, which should interrupt negative signaling through 3DL1, leading to NK cell activation, provided there is sufficient engagement of activating NKRs. We examined the functionality of NK cells expressing or not NKG2A and 3DL1 stimulated by HLA-null and autologous iCD4 cells. Flow cytometry was used to gate on each NKG2A+/NKG2A−3DL1+/3DL1−(NKG2A+/−3DL1+/−) population and to measure the frequency of all possible combinations of CD107a expression and gamma interferon (IFN-γ) and CCL4 secretion. The highest frequency of functional NK cells responding to HLA-null cell stimulation was the NKG2A+3DL1+NK cell population. The highest frequencies of functional NK cells responding to autologous iCD4 cells were those expressing NKG2A; coexpression of 3DL1 did not further modulate responsiveness. This was the case for the functional subsets characterized by the sum of all functions tested (total responsiveness), as well as by the trifunctional CD107a+IFN-γ+CCL4+, CD107a+IFN-γ+, total CD107a+, and total IFN-γ+functional subsets. These results indicate that the NKG2A receptor has a role in NK cell-mediated anti-HIV responses.IMPORTANCEHIV-infected CD4 (iCD4) cells activate NK cells, which then control HIV replication. However, little is known regarding which NK cell populations iCD4 cells stimulate to develop antiviral activity. Here, we examine the frequency of NK cell populations, defined by the presence/absence of the NK cell receptors (NKRs) NKG2A and 3DL1, that respond to iCD4 cells. NKG2A and 3DL1 are involved in priming NK cells for antiviral functions upon encountering virus-infected cells. A higher frequency of NKG2A+than NKG2A−NK cells responded to iCD4 cells by developing antiviral functions such as CD107a expression, which correlates with NK cell killing, and secretion of gamma interferon and CCL4. Coexpression of 3DL1 on the NKG2A+and NKG2A−NK cells did not modulate responses to iCD4 cells. Understanding the mechanisms underlying the interaction of NK cells with iCD4 cells that lead to HIV control may contribute to developing strategies that harness NK cells for preventing or controlling HIV infection.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1764-1764 ◽  
Author(s):  
Jens Pahl ◽  
Uwe Reusch ◽  
Thorsten Gantke ◽  
Anne Kerber ◽  
Joachim Koch ◽  
...  

Abstract Introduction: AFM13 is an NK-cell engaging CD30/CD16A bispecific tetravalent TandAb antibody currently in phase 2 clinical development in Hodgkin lymphoma (HL) and other CD30+ malignancies. It engages NK-cells through CD16A with high affinity and specificity and confers significantly stronger NK-cell activation compared to other therapeutic antibodies. We have previously shown synergistic efficacy when NK-cell activation by AFM13 is combined with check-point modulation such as anti-PD-1 treatment, which is known to unleash T cell and NK-cell activity. The goal of this study was to identify further candidates for combination treatments and biomarkers that potentially indicate NK-cell responses to AFM13 treatment. Methods: AFM13-mediated NK-cell cytotoxicity and IFN-γ production after 4-hour interaction with HL cell lines was measured by 51Cr release assays and flow cytometry, respectively. Expression of NK-cell receptors, NK-cell proliferation (CFSE dilution) and expansion (absolute cell counts) was analyzed by flow cytometry. Results: The interaction of NK-cells with AFM13-coated tumor cells up-regulated the expression of NK-cell receptors such as CD25, CD69, CD137/4-1BB as well as molecules that may serve as NK-cell check-points when compared with the unrelated NK-cell binding TandAb AFM12 that does not bind to target cells. Importantly, CD16A engagement by AFM13 enhanced the proliferation and expansion potential of NK-cells when subsequently incubated with IL-15 or with particularly low doses of IL-2. NK-cell cytotoxicity and IFN-γ production was substantially increased towards CD30+ tumor cells in the presence of AFM13. Even target cells resistant to naïve and IL-2/IL-15-activated NK-cells were susceptible to AFM13-induced NK-cell cytotoxicity. AFM13 concentrations of as low as 10-2 µg/mL resulted in maximal activity while AFM13 was significantly more potent than native anti-CD30 IgG1 antibody. NK-cell activation by IL-2 or IL-15 had a synergistic effect on AFM13-mediated cytotoxicity. Conclusion: AFM13 specifically enhances the cytotoxic, proliferative and cytokine-producing potential of NK-cells. Our data indicate that the distinctive modulation of NK-cell receptors can be utilized to monitor NK-cell responses during AFM13 therapy and provides candidates for therapeutic combination strategies. Moreover, the combination with low doses of IL-2 or with IL-15 may expand the quantity of tumor-reactive NK-cells after AFM13 treatment and promote NK-cell functionality in the tumor microenvironment in cancer patients. Disclosures Reusch: Affimed: Employment, Patents & Royalties: Patents. Gantke:Affimed GmbH: Employment. Kerber:Affimed: Employment. Koch:Affimed: Employment. Treder:Affimed: Employment. Cerwenka:Affimed: Research Funding.


2008 ◽  
Vol 82 (10) ◽  
pp. 4785-4792 ◽  
Author(s):  
Brian R. Long ◽  
Lishomwa C. Ndhlovu ◽  
Jorge R. Oksenberg ◽  
Lewis L. Lanier ◽  
Frederick M. Hecht ◽  
...  

ABSTRACT A flurry of recent reports on the role of activating and inhibitory forms of the killer cell immunoglobulin-like receptors (KIR) in natural killer (NK) cell activity against human immunodeficiency virus type 1 (HIV-1) have yielded widely divergent results. The role of the activating NK receptor encoded by the KIR3DS1 allele and its putative ligands, members of the HLA class I Bw4Ile80 cluster, in early HIV-1 disease is controversial. We selected 60 treatment-naïve adults for study from the OPTIONS cohort of individuals with early HIV-1 infection in San Francisco. We performed NK cell functional assays measuring gamma interferon (IFN-γ) and CD107a expression by NK cells in the unstimulated state and after stimulation by the major histocompatibility complex class I-deficient 721.221 B-lymphoblastoid cell line. In addition, we measured CD38 expression (a T-cell activation marker) on T and NK cells. Persons who have at least one copy of the KIR3DS1 gene had higher IFN-γ and CD107a expression in the unstimulated state compared to those who do not possess this gene. After stimulation, both groups experienced a large induction of IFN-γ and CD107a, with KIR3DS1 carriers achieving a greater amount of IFN-γ expression. Differences in effector activity correlating with KIR3DS1 were not attributable to joint carriage of HLA Bw4Ile80 and KIR3DS1. We detected a partial but not complete dependence of KIR3DS1 on the members of B*58 supertype (B*57 and B*58) leading to higher NK cell function. Possessing KIR3DS1 was associated with lower expression of CD38 on both CD8+ T and NK cells and with a loss or weakening of the known strong associations between CD8+ T-cell expression of CD38 mean fluorescence intensity and the HIV-1 viral load. We observed that possessing KIR3DS1 was associated with higher NK cell effector functions in early HIV-1 disease, despite the absence of HLA Bw4Ile80, a putative ligand of KIR3DS1. Carriage of KIR3DS1 was associated with diminished CD8+ T-cell activation, as determined by expression of CD38, and a disruption of the traditional relationship between viral load and activation in HIV-1 disease, which may lead to better clinical outcomes for these individuals.


2008 ◽  
Vol 77 (2) ◽  
pp. 770-782 ◽  
Author(s):  
Rebecca Ing ◽  
Mary M. Stevenson

ABSTRACT Dendritic cells (DCs) are important accessory cells for promoting NK cell gamma interferon (IFN-γ) production in vitro in response to Plasmodium falciparum-infected red blood cells (iRBC). We investigated the requirements for reciprocal activation of DCs and NK cells leading to Th1-type innate and adaptive immunity to P. chabaudi AS infection. During the first week of infection, the uptake of iRBC by splenic CD11c+ DCs in resistant wild-type (WT) C57BL/6 mice was similar to that in interleukin 15−/− (IL-15−/−) and IL-12p40−/− mice, which differ in the severity of P. chabaudi AS infection. DCs from infected IL-15−/− mice expressed costimulatory molecules, produced IL-12, and promoted IFN-γ secretion by WT NK cells in vitro as efficiently as WT DCs. In contrast, DCs from infected IL-12p40−/− mice exhibited alterations in maturation and cytokine production and were unable to induce NK cell IFN-γ production. Coculture of DCs and NK cells demonstrated that DC-mediated NK cell activation required IL-12 and, to a lesser extent, IL-2, as well as cell-cell contact. In turn, NK cells from infected WT mice enhanced DC maturation, IL-12 production, and priming of CD4+ T-cell proliferation and IFN-γ secretion. Infected WT mice depleted of NK cells, which exhibit increased parasitemia, had impaired DC maturation and DC-induced CD4+ Th1 cell priming. These findings indicate that DC-NK cell reciprocal cross talk is critical for control and rapid resolution of P. chabaudi AS infection and provide in vivo evidence for the importance of this interaction in IFN-γ-dependent immunity to malaria.


Blood ◽  
2012 ◽  
Vol 120 (18) ◽  
pp. 3729-3740 ◽  
Author(s):  
Alice C. N. Brown ◽  
Ian M. Dobbie ◽  
Juha-Matti Alakoskela ◽  
Ilan Davis ◽  
Daniel M. Davis

Abstract Natural killer (NK) cells secrete lytic granules to directly kill virus-infected or transformed cells and secrete cytokines to communicate with other cells. Three-dimensional super-resolved images of F-actin, lytic granules, and IFN-γ in primary human NK cells stimulated through different activating receptors reveal that both IFN-γ and lytic granules accumulated in domains where the periodicity of the cortical actin mesh at the synapse opened up to be penetrable. Ligation of some activating receptors alone (eg, CD16 or NKG2D) was sufficient to increase the periodicity of the actin mesh, but surprisingly, ligation of others (eg, NKp46 or CD2) was not sufficient to induce cortical actin remodeling unless LFA-1 was coligated. Importantly, influenza virus particles that can be recognized by NK cells similarly did not open the actin mesh but could if LFA-1 was coligated. This leads us to propose that immune cells using germline-encoded receptors to directly recognize foreign proteins can use integrin recognition to differentiate between free pathogens and pathogen-infected cells that will both be present in blood. This distinction would not be required for NK cell receptors, such as NKG2D, which recognize host cell–encoded proteins that can only be found on diseased cells and not pathogens.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Francesco Marras ◽  
Federica Bozzano ◽  
Andrea De Maria

Natural Killer (NK) cells are endowed with cell-structure-sensing receptors providing inhibitory protection from self-destruction (inhibitory NK receptors, iNKRs, including killer inhibitory receptors and other molecules) and rapid triggering potential leading to functional cell activation by Toll-like receptors (TLRs), cytokine receptors, and activating NK cell receptors including natural cytotoxicity receptors (NCRs, i.e., NKp46, NKp46, and NKp44). NCR and NKG2D recognize ligands on infected cells which may be endogenous or may directly bind to some structures derived from invading pathogens. In this paper, we address the known direct or indirect interactions between activating receptors and pathogens and their expression during chronic HIV and HCV infections.


2010 ◽  
Vol 84 (17) ◽  
pp. 8959-8963 ◽  
Author(s):  
R. Keith Reeves ◽  
Tristan I. Evans ◽  
Jacqueline Gillis ◽  
R. Paul Johnson

ABSTRACT Herein we demonstrate that chronic simian immunodeficiency virus (SIV) infection induces significant upregulation of the gut-homing marker α4β7 on macaque NK cells, coupled with downregulation of the lymph node-trafficking marker, CCR7. Interestingly, in naïve animals, α4β7 expression was associated with increased NK cell activation and, on CD16+ NK cells, delineated a unique dual-function cytotoxic-CD107a+/gamma interferon (IFN-γ)-secreting population. However, while SIV infection increased CD107a expression on stimulated CD56+ NK cells, α4β7+ and α4β7− NK cells were affected similarly. These findings suggest that SIV infection redirects NK cells away from the lymph nodes to the gut mucosae but alters NK cell function independent of trafficking repertoires.


Blood ◽  
2008 ◽  
Vol 112 (6) ◽  
pp. 2421-2428 ◽  
Author(s):  
Olaf Gross ◽  
Christina Grupp ◽  
Christian Steinberg ◽  
Stephanie Zimmermann ◽  
Dominikus Strasser ◽  
...  

AbstractNatural killer (NK) cells are innate immune cells that mediate resistance against viruses and tumors. They express multiple activating receptors that couple to immunoreceptor tyrosine-based activation motif (ITAM)–containing signaling chains for downstream cell activation. Ligation of activating NK-cell receptors induces NK-cell cytotoxicity and cytokine release. How these distinct events are selectively controlled is not well defined. Here we report the identification of a specific signaling pathway that operates downstream of the ITAM-coupled NK-cell receptors NK1.1, Ly49D, Ly49H, and NKG2D. Using primary NK cells from Bcl10−/−, Malt1−/−, Carma1−/−, and Card9−/− mice, we demonstrate a key role for Bcl10 signalosomes in the activation of canonical NF-κB signaling as well as JNK and p38 MAPK upon NK-cell triggering. Bcl10 directly cooperates with Malt1 and depends on Carma1 (Card11) but not on Card9 for NK-cell activation. These Bcl10-dependent cascades selectively control cytokine and chemokine production but do not affect NK-cell differentiation or killing. Thus, we identify a molecular basis for the segregation of NK-cell receptor–induced signals for cytokine release and target cell killing and extend the previously recognized roles for CARD-protein/Bcl10/Malt1 complexes in ITAM receptor signaling in innate and adaptive immune cells.


2018 ◽  
Vol 116 (3) ◽  
pp. 988-996 ◽  
Author(s):  
Han Wang ◽  
Jianxun Qi ◽  
Shuijun Zhang ◽  
Yan Li ◽  
Shuguang Tan ◽  
...  

Natural killer (NK) cells are important component of innate immunity and also contribute to activating and reshaping the adaptive immune responses. The functions of NK cells are modulated by multiple inhibitory and stimulatory receptors. Among these receptors, the activating receptor CD226 (DNAM-1) mediates NK cell activation via binding to its nectin-like (Necl) family ligand, CD155 (Necl-5). Here, we present a unique side-by-side arrangement pattern of two tandem immunoglobulin V-set (IgV) domains deriving from the ectodomains of both human CD226 (hCD226-ecto) and mouse CD226 (mCD226-ecto), which is substantially different from the conventional head-to-tail arrangement of other multiple Ig-like domain molecules. The hybrid complex structure of mCD226-ecto binding to the first domain of human CD155 (hCD155-D1) reveals a conserved binding interface with the first domain of CD226 (D1), whereas the second domain of CD226 (D2) both provides structural supports for the unique architecture of CD226 and forms direct interactions with CD155. In the absence of the D2 domain, CD226-D1 exhibited substantially reduced binding efficacy to CD155. Collectively, these findings would broaden our knowledge of the interaction between NK cell receptors and the nectin/Necl family ligands, as well as provide molecular basis for the development of CD226-targeted antitumor immunotherapeutics.


mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Vivian Vasconcelos Costa ◽  
Weijian Ye ◽  
Qingfeng Chen ◽  
Mauro Martins Teixeira ◽  
Peter Preiser ◽  
...  

ABSTRACT Natural killer (NK) cells play a protective role against dengue virus (DENV) infection, but the cellular and molecular mechanisms are not fully understood. Using an optimized humanized mouse model, we show that human NK cells, through the secretion of gamma interferon (IFN-γ), are critical in the early defense against DENV infection. Depletion of NK cells or neutralization of IFN-γ leads to increased viremia and more severe thrombocytopenia and liver damage in humanized mice. In vitro studies using autologous human NK cells show that DENV-infected monocyte-derived dendritic cells (MDDCs), but not monocytes, activate NK cells in a contact-dependent manner, resulting in upregulation of CD69 and CD25 and secretion of IFN-γ. Blocking adhesion molecules (LFA-1, DNAM-1, CD2, and 2β4) on NK cells abolishes NK cell activation, IFN-γ secretion, and the control of DENV replication. NK cells activated by infected MDDCs also inhibit DENV infection in monocytes. These findings show the essential role of human NK cells in protection against acute DENV infection in vivo, identify adhesion molecules and dendritic cells required for NK cell activation, and delineate the sequence of events for NK cell activation and protection against DENV infection. IMPORTANCE Dengue is a mosquito-transmitted viral disease with a range of symptoms, from mild fever to life-threatening dengue hemorrhagic fever. The diverse disease manifestation is thought to result from a complex interplay between viral and host factors. Using mice engrafted with a human immune system, we show that human NK cells inhibit virus infection through secretion of the cytokine gamma interferon and reduce disease pathogenesis, including depletion of platelets and liver damage. During a natural infection, DENV initially infects dendritic cells in the skin. We find that NK cells interact with infected dendritic cells through physical contact mediated by adhesion molecules and become activated before they can control virus infection. These results show a critical role of human NK cells in controlling DENV infection in vivo and reveal the sequence of molecular and cellular events that activate NK cells to control dengue virus infection. IMPORTANCE Dengue is a mosquito-transmitted viral disease with a range of symptoms, from mild fever to life-threatening dengue hemorrhagic fever. The diverse disease manifestation is thought to result from a complex interplay between viral and host factors. Using mice engrafted with a human immune system, we show that human NK cells inhibit virus infection through secretion of the cytokine gamma interferon and reduce disease pathogenesis, including depletion of platelets and liver damage. During a natural infection, DENV initially infects dendritic cells in the skin. We find that NK cells interact with infected dendritic cells through physical contact mediated by adhesion molecules and become activated before they can control virus infection. These results show a critical role of human NK cells in controlling DENV infection in vivo and reveal the sequence of molecular and cellular events that activate NK cells to control dengue virus infection.


2020 ◽  
Vol 55 (5) ◽  
pp. 1802422
Author(s):  
Justine Devulder ◽  
Cécile Chenivesse ◽  
Valérie Ledroit ◽  
Stéphanie Fry ◽  
Pierre-Emmanuel Lobert ◽  
...  

Rhinovirus infections are the main cause of asthma exacerbations. As natural killer (NK) cells are important actors of the antiviral innate response, we aimed at evaluating the functions of NK cells from severe asthma patients in response to rhinovirus-like molecules or rhinoviruses.Peripheral blood mononuclear cells from patients with severe asthma and healthy donors were stimulated with pathogen-like molecules or with the rhinoviruses (RV)-A9 and RV-2. NK cell activation, degranulation and interferon (IFN)-γ expression were analysed.NK cells from severe asthma patients were less cytotoxic than those from healthy donors in response to toll-like receptor (TLR)3, TLR7/8 or RV-A9 but not in response to RV-2 stimulation. Furthermore, when cultured with interleukin (IL)-12+IL-15, cytokines which are produced during viral infections, NK cells from patients with severe asthma were less cytotoxic and expressed less IFN-γ than NK cells from healthy donors. NK cells from severe asthmatics exhibited an exhausted phenotype, with an increased expression of the checkpoint molecule Tim-3.Together, our findings indicate that the activation of NK cells from patients with severe asthma may be insufficient during some but not all respiratory infections. The exhausted phenotype may participate in NK cell impairment and aggravation of viral-induced asthma exacerbation in these patients.


Sign in / Sign up

Export Citation Format

Share Document