scholarly journals Identification of Hendra Virus G Glycoprotein Residues That Are Critical for Receptor Binding

2007 ◽  
Vol 81 (11) ◽  
pp. 5893-5901 ◽  
Author(s):  
Kimberly A. Bishop ◽  
Tzanko S. Stantchev ◽  
Andrew C. Hickey ◽  
Dimple Khetawat ◽  
Katharine N. Bossart ◽  
...  

ABSTRACT Hendra virus (HeV) is an emerging paramyxovirus capable of infecting and causing disease in a variety of mammalian species, including humans. The virus infects its host cells through the coordinated functions of its fusion (F) and attachment (G) glycoproteins, the latter of which is responsible for binding the virus receptors ephrinB2 and ephrinB3. In order to identify the receptor binding site, a panel of G glycoprotein constructs containing mutations was generated using an alanine-scanning mutagenesis strategy. Based on a predicted G structure, charged amino acids residing in regions that could be homologous to those in the measles virus H attachment glycoprotein known to be involved in its protein receptor interaction were targeted. Using a coprecipitation-based assay, seven single-amino-acid substitutions in HeV G were identified as having significantly impaired binding to both the ephrinB2 and ephrinB3 viral receptors: D257A, D260A, G439A, K443A, G449A, K465A, and D468A. The impairment of receptor interaction conferred a concomitant diminution in their abilities to promote membrane fusion when coexpressed with F. The G glycoprotein mutants were also recognized by three or more conformation-dependent monoclonal antibodies of a panel of five, were expressed on the cell surface, and retained their abilities to bind and coprecipitate F. Interestingly, some of these mutant G glycoproteins coprecipitated with F more efficiently than wild-type G. Taken together, these data provide strong biochemical and functional evidence that some of these residues could be part of a conformation-dependent, discontinuous, and overlapping ephrinB2 and -B3 binding domain within the HeV G glycoprotein.

Author(s):  
Giulia Gallo ◽  
Carina Conceicao ◽  
Christina Tsirigoti ◽  
Brian Willett ◽  
Stephen C Graham ◽  
...  

The enveloped morbilliviruses utilise conserved proteinaceous receptors to enter host cells: SLAMF1 or Nectin-4. Receptor binding is initiated by the viral attachment protein Haemagglutinin (H), with the viral Fusion protein (F) driving membrane fusion. Crystal structures of the prototypic morbillivirus measles virus H with either SLAMF1 or Nectin-4 are available and have served as the basis for improved understanding of this interaction. However, whether these interactions remain conserved throughout the morbillivirus genus requires further characterisation. Using a random mutagenesis approach, based on error-prone PCR, we targeted the putative receptor binding site for SLAMF1 interaction on peste des petits ruminants virus (PPRV) H, identifying mutations that inhibited virus-induced cell-cell fusion. These data, combined with structural modelling of the PPRV H and ovine SLAMF1 interaction, indicate this region is functionally conserved across all morbilliviruses. Error-prone PCR provides a powerful tool for functionally characterising functional domains within viral proteins.


2006 ◽  
Vol 80 (15) ◽  
pp. 7546-7554 ◽  
Author(s):  
Vanessa Guillaume ◽  
Hamide Aslan ◽  
Michelle Ainouze ◽  
Mathilde Guerbois ◽  
T. Fabian Wild ◽  
...  

ABSTRACT As a preliminary to the localization of the receptor-binding site(s) on the Nipah virus (NiV) glycoprotein (NiV-G), we have undertaken the identification of NiV-G residues that play a role in fusion promotion. To achieve this, we have used two strategies. First, as NiV and Hendra virus (HeV) share a common receptor and their cellular tropism is similar, we hypothesized that residues functioning in receptor attachment could be conserved between their respective G proteins. Our initial strategy was to target charged residues (which can be expected to be at the surface of the protein) conserved between the NiV-G and HeV-G globular heads. Second, we generated NiV variants that escaped neutralization by anti-NiV-G monoclonal antibodies (MAbs) that neutralize NiV both in vitro and in vivo, likely by blocking receptor attachment. The sequencing of such “escape mutants” identified NiV-G residues present in the epitopes to which the neutralizing MAbs are directed. Residues identified via these two strategies whose mutation had an effect on fusion promotion were localized on a new structural model for the NiV-G protein. Our results suggest that seven NiV-G residues, including one (E533) that was identified using both strategies, form a contiguous site on the top of the globular head that is implicated in ephrinB2 binding. This site commences near the shallow depression in the center of the top surface of the globular head and extends to the rim of the barrel-like structure on the top loops of β-sheet 5. The topology of this site is strikingly similar to that proposed to form the SLAM receptor site on another paramyxovirus attachment protein, that of the measles virus hemagglutinin.


2008 ◽  
Vol 82 (17) ◽  
pp. 8906-8910 ◽  
Author(s):  
Karin E. Peterson ◽  
Susan Pourciau ◽  
Min Du ◽  
Rachel LaCasse ◽  
Melissa Pathmajeyan ◽  
...  

ABSTRACT Changes in the envelope proteins of retroviruses can alter the ability of these viruses to infect the central nervous system (CNS) and induce neurological disease. In the present study, nine envelope residues were found to influence neurovirulence of the Friend murine polytropic retrovirus Fr98. When projected on a three-dimensional model, these residues were clustered in two spatially separated groups, one in variable region B of the receptor binding site and the other on the opposite side of the envelope. Further studies indicated a role for these residues in virus replication in the CNS, although the residues did not affect viral entry.


2006 ◽  
Vol 87 (10) ◽  
pp. 2767-2779 ◽  
Author(s):  
Yusuke Yanagi ◽  
Makoto Takeda ◽  
Shinji Ohno

Measles virus (MV), a member of the genus Morbillivirus in the family Paramyxoviridae, is an enveloped virus with a non-segmented, negative-strand RNA genome. It has two envelope glycoproteins, the haemagglutinin (H) and fusion proteins, which are responsible for attachment and membrane fusion, respectively. Human signalling lymphocyte activation molecule (SLAM; also called CD150), a membrane glycoprotein of the immunoglobulin superfamily, acts as a cellular receptor for MV. SLAM is expressed on immature thymocytes, activated lymphocytes, macrophages and dendritic cells and regulates production of interleukin (IL)-4 and IL-13 by CD4+ T cells, as well as production of IL-12, tumour necrosis factor alpha and nitric oxide by macrophages. The distribution of SLAM is in accord with the lymphotropism and immunosuppressive nature of MV. Canine distemper virus and Rinderpest virus, other members of the genus Morbillivirus, also use canine and bovine SLAM as receptors, respectively. Laboratory-adapted MV strains may use the ubiquitously expressed CD46, a complement-regulatory molecule, as an alternative receptor through amino acid substitutions in the H protein. Furthermore, MV can infect SLAM− cells, albeit inefficiently, via the SLAM- and CD46-independent pathway, which may account for MV infection of epithelial, endothelial and neuronal cells in vivo. MV infection, however, is not determined entirely by the H protein–receptor interaction, and other MV proteins can also contribute to its efficient growth by facilitating virus replication at post-entry steps. Identification of SLAM as the principal receptor for MV has provided us with an important clue for better understanding of MV tropism and pathogenesis.


2006 ◽  
Vol 80 (4) ◽  
pp. 1897-1905 ◽  
Author(s):  
Dan J. Gustafsson ◽  
Anna Segerman ◽  
Kristina Lindman ◽  
Ya-Fang Mei ◽  
Göran Wadell

ABSTRACT The major determinant of adenovirus (Ad) attachment to host cells is the C-terminal knob domain of the trimeric fiber protein. Ad type 11p (Ad11p; species B2) in contrast to Ad7p (species B1) utilizes at least two different cellular attachment receptors, designated sBAR (species B adenovirus receptor) and sB2AR (species B2 adenovirus receptor). CD46 has recently been identified as one of the Ad11p attachment receptors. However, CD46 did not seem to constitute a functional receptor for Ad7p. Although Ad7p shares high knob amino acid identity with Ad11p, Ad7p is deficient in binding to both sB2AR and CD46. To determine what regions of the Ad11p fiber knob are necessary for sB2AR-CD46 interaction, we constructed recombinant fiber knobs (rFK) with Ad11p/Ad7p chimeras and Ad11p sequences having a single amino acid substitution from Ad7p. Binding of the constructs to A549 and CHO-CD46 BC1 isoform-expressing cells was analyzed by flow cytometry. Our results indicate that an Arg279Glu substitution is sufficient to convert the Ad11p receptor-interaction phenotype to that of Ad7p and abolish sB2AR and CD46 interaction. Also a Glu279Arg substitution in Ad7p rFKs increases CD46 binding. Thus, the lateral HI loop of the Ad11p fiber knob seems to be the key determinant for Ad11p sB2AR-CD46 interaction. This result is comparable to another non-coxsackie-adenovirus receptor binding Ad (Ad37p), where substitution of one amino acid abolishes virus-cell interaction. In conjunction with previous results, our findings also strongly suggest that sB2AR is equivalent to CD46.


2021 ◽  
Author(s):  
Lena Ricemeyer ◽  
Nayeli Aguilar-Hernández ◽  
Tomás López ◽  
Rafaela Espinosa ◽  
Sarah Lanning ◽  
...  

Human astrovirus is an important cause of viral gastroenteritis worldwide. Young children, the elderly, and the immunocompromised are especially at risk for contracting severe disease. However, no vaccines exist to combat human astrovirus infection. Evidence points to the importance of antibodies in enabling protection of healthy adults from reinfection. To develop an effective subunit vaccine that broadly protects against diverse astrovirus serotypes, we must understand how neutralizing antibodies target the capsid surface at the molecular level. Here, we report the structures of the human astrovirus capsid spike domain bound to two neutralizing monoclonal antibodies. These antibodies bind two distinct conformational epitopes on the spike surface. We add to existing evidence that the human astrovirus capsid spike contains a receptor-binding domain and demonstrate that both antibodies neutralize human astrovirus by blocking virus attachment to host cells. We identify patches of conserved amino acids that overlap or border the antibody epitopes and may constitute a receptor-binding site. Our findings provide a basis to develop therapies that prevent and treat human astrovirus gastroenteritis. Importance Human astroviruses infect nearly every person in the world during childhood and cause diarrhea, vomiting, and fever. Despite the prevalence of this virus, little is known about how antibodies block virus infection. Here, we determined crystal structures of the astrovirus capsid protein in complex with two virus-neutralizing antibodies. We show that the antibodies bind two distinct sites on the capsid spike domain; however, both antibodies block virus attachment to human cells. Importantly, our findings support the use of the human astrovirus capsid spike as an antigen in a subunit-based vaccine to prevent astrovirus disease.


2020 ◽  
Author(s):  
Pedro A. Rosario ◽  
Brian R. McNaughton

AbstractInfection and replication of SARS CoV-2 (the virus that causes COVID-19) requires entry to the interior of host cells. In humans, a Protein-Protein Interaction (PPI) between the SARS CoV-2 Receptor-Binding Domain (RBD) and the extracellular peptidase domain of ACE2, on the surface of cells in the lower respiratory tract, is an initial step in the entry pathway. Inhibition of the SARS CoV-2 RBD / ACE2 PPI is currently being evaluated as a target for therapeutic and/or prophylactic intervention. However, relatively little is known about the molecular underpinnings of this complex. Employing multiple computational platforms, we predicted ‘hot-spot’ residues in a positive control PPI (PMI / MDM2) and the CoV-2 RBD/ACE2 complex. Computational alanine scanning mutagenesis was performed to predict changes in Gibbs’ free energy that are associated with mutating residues at the positive control (PMI/MDM2) or SARS RBD/ACE2 binding interface to alanine. Additionally, we used the Adaptive Poisson-Boltzmann Solver to calculate macromolecular electrostatic surfaces at the interface of the positive control PPI and SARS CoV-2 / ACE2 PPI. Collectively, this study illuminates predicted hot-spot residues, and clusters, at the SARS CoV-2 RBD / ACE2 binding interface, potentially guiding the development of reagents capable of disrupting this complex and halting COVID-19.


Author(s):  
Acharya Balkrishna ◽  
SUBARNA POKHREL ◽  
Jagdeep Singh ◽  
Anurag Varshney

Abstract Background Newly emerged COVID-19 has been shown to engage the host cell ACE2 through its spike protein receptor binding domain (RBD). Here we show that natural phytochemical from a medicinal herb, Withania somnifera, have distinct effects on viral RBD and host ACE2 receptor complex. Methods We employed molecular docking to screen thousands of phytochemicals against the ACE2-RBD complex, performed molecular dynamics (MD) simulation, and estimated the electrostatic component of binding free energy, along with the computation of salt bridge electrostatics. Results We report that W. somnifera compound, Withanone, docked very well in the binding interface of AEC2-RBD complex, and was found to move slightly towards the interface centre on simulation. Withanone significantly decreased electrostatic component of binding free energies of ACE2-RBD complex. Two salt bridges were also identified at the interface; incorporation of Withanone destabilized these salt bridges and decreased their occupancies. We postulate, such an interruption of electrostatic interactions between the RBD and ACE2 would block or weaken COVID-19 entry and its subsequent infectivity. Conclusion Our data, for the first time, show that natural phytochemicals could well be the viable options for controlling COVID-19 entry into host cells, and W. somnifera may be the first choice of herbs in these directions to curb the COVID-19 infectivity.


2019 ◽  
Vol 116 (41) ◽  
pp. 20707-20715 ◽  
Author(s):  
Eric D. Laing ◽  
Chanakha K. Navaratnarajah ◽  
Sofia Cheliout Da Silva ◽  
Stephanie R. Petzing ◽  
Yan Xu ◽  
...  

Cedar virus (CedV) is a bat-borne henipavirus related to Nipah virus (NiV) and Hendra virus (HeV), zoonotic agents of fatal human disease. CedV receptor-binding protein (G) shares only ∼30% sequence identity with those of NiV and HeV, although they can all use ephrin-B2 as an entry receptor. We demonstrate that CedV also enters cells through additional B- and A-class ephrins (ephrin-B1, ephrin-A2, and ephrin-A5) and report the crystal structure of the CedV G ectodomain alone and in complex with ephrin-B1 or ephrin-B2. The CedV G receptor-binding site is structurally distinct from other henipaviruses, underlying its capability to accommodate additional ephrin receptors. We also show that CedV can enter cells through mouse ephrin-A1 but not human ephrin-A1, which differ by 1 residue in the key contact region. This is evidence of species specific ephrin receptor usage by a henipavirus, and implicates additional ephrin receptors in potential zoonotic transmission.


2009 ◽  
Vol 83 (7) ◽  
pp. 2883-2891 ◽  
Author(s):  
Derek Dube ◽  
Matthew B. Brecher ◽  
Sue E. Delos ◽  
Sean C. Rose ◽  
Edward W. Park ◽  
...  

ABSTRACT Entry of ebolavirus (EBOV) into cells is mediated by its glycoprotein (GP1,2), a class I fusion protein whose structure was recently determined (J. E. Lee et al., Nature 454:177-182, 2008). Here we confirmed two major predictions of the structural analysis, namely, the residues in GP1 and GP2 that remain after GP1,2 is proteolytically primed by endosomal cathepsins for fusion and residues in GP1 that are critical for binding to host cells. Mass spectroscopic analysis indicated that primed GP1,2 contains residues 33 to 190 of GP1 and all residues of GP2. The location of the receptor binding site was determined by a two-pronged approach. We identified a small receptor binding region (RBR), residues 90 to 149 of GP1, by comparing the cell binding abilities of four RBR proteins produced in high yield. We characterized the binding properties of the optimal RBR (containing GP1 residues 57 to 149) and then conducted a mutational analysis to identify critical binding residues. Substitutions at four lysines (K95, K114, K115, and K140) decreased binding and the ability of RBR proteins to inhibit GP1,2-mediated infection. K114, K115, and K140 lie in a small region modeled to be located on the top surface of the chalice following proteolytic priming; K95 lies deeper in the chalice bowl. Combined with those of Lee et al., our findings provide structural insight into how GP1,2 is primed for fusion and define the core of the EBOV RBR (residues 90 to 149 of GP1) as a highly conserved region containing a two-stranded β-sheet, the two intra-GP1 disulfide bonds, and four critical Lys residues.


Sign in / Sign up

Export Citation Format

Share Document