scholarly journals Endocytic Internalization of Herpes Simplex Virus 1 in Human Keratinocytes at Low Temperature

2020 ◽  
Author(s):  
Nydia De La Cruz ◽  
Dagmar Knebel-Mörsdorf

Herpes simplex virus 1 (HSV-1) can adopt a variety of pathways to accomplish cellular internalization. In human keratinocytes representing the natural target cell of HSV-1, both direct plasma membrane fusion and endocytic uptake have been found. The impact of either pathway in successful infection, however, remains to be fully understood. To address the role of each internalization mode, we performed infection studies at low temperature as a tool to interfere with endocytic pathways. Interestingly, successful HSV-1 entry in primary human keratinocytes and HaCaT cells was observed even at 7°C, although delayed compared to infection at 37°C. Moreover, ex vivo infection of murine epidermis demonstrated that virus entry at 7°C is not only accomplished in cultured cells but also in tissue. Control experiments with cholera toxin B confirmed a block of endocytic uptake at 7°C. In addition, uptake of dextran by macropinosomes and phagocytic uptake of latex beads was also inhibited at 7°C. Infection of nectin-1-deficient murine keratinocytes affirmed that the entry at 7°C was receptor-dependent. Strikingly, the lysosomotropic agent, ammonium chloride, strongly inhibited HSV-1 entry suggesting a role for endosomal acidification. Ultrastructural analyses in turn revealed free capsids in the cytoplasm as well as virus particles in vesicles after infection at 7°C supporting both plasma membrane fusion and endocytic internalization as already observed at 37°C. Overall, entry of HSV-1 at 7°C suggests that the virus can efficiently adopt nectin-1-dependent unconventional vesicle uptake mechanisms in keratinocytes strengthening the role of endocytic internalization for successful infection. IMPORTANCE The human pathogen herpes simplex virus 1 (HSV-1) relies on multiple internalization pathways to initiate infection. Our focus is on the entry in human keratinocytes, the major in vivo target during primary and recurrent infection. While antivirals reduce the severity of clinical cases, there is no cure or vaccine against HSV. To develop strategies that interfere with virus penetration, we need to understand the various parameters and conditions that determine virus entry. Here, we addressed the impact of virus internalization via vesicles by blocking endocytic processes at low temperature. Intriguingly, we detected entry of HSV-1 even at 7°C which led to infection of primary keratinocytes and epidermal tissue. Moreover, electron microscopy of human keratinocytes at 7°C support that internalization is based on fusion of the viral envelope with the plasma membrane as well as vesicle membranes. These results provide novel insights into conditions that still allow endocytic internalization of HSV-1.

2016 ◽  
Vol 90 (22) ◽  
pp. 10379-10389 ◽  
Author(s):  
Charlotte L. Sayers ◽  
Gillian Elliott

ABSTRACTHerpes simplex virus 1 (HSV-1) infects humans through stratified epithelia that are composed primarily of keratinocytes. The route of HSV-1 entry into keratinocytes has been the subject of limited investigation, but it is proposed to involve pH-dependent endocytosis, requiring the gD-binding receptor nectin-1. Here, we have utilized the nTERT human keratinocyte cell line as a new model for dissecting the mechanism of HSV-1 entry into the host. Although immortalized, these cells nonetheless retain normal growth and differentiation properties of primary cells. Using short interfering RNA (siRNA) depletion studies, we confirm that, despite nTERT cells expressing high levels of the alternative gD receptor HVEM, HSV-1 requires nectin-1, not HVEM, to enter these cells. Strikingly, virus entry into nTERT cells occurred with unusual rapidity, such that maximum penetration was achieved within 5 min. Moreover, HSV-1 was able to enter keratinocytes but not other cell types at temperatures as low as 7°C, conditions where endocytosis was shown to be completely inhibited. Transmission electron microscopy of early entry events at both 37°C and 7°C identified numerous examples of naked virus capsids located immediately beneath the plasma membrane, with no evidence of virions in cytoplasmic vesicles. Taken together, these results imply that HSV-1 uses the nectin-1 receptor to enter human keratinocyte cells via a previously uncharacterized rapid plasma membrane fusion pathway that functions at low temperature. These studies have important implications for current understanding of the relationship between HSV-1 and its relevantin vivotarget cell.IMPORTANCEThe gold standard of antiviral treatment for any human virus infection is the prevention of virus entry into the host cell. In the case of HSV-1, primary infection in the human begins in the epidermis of the skin or the oral mucosa, where the virus infects keratinocytes, and it is therefore important to understand the molecular events involved in HSV-1 entry into this cell type. Nonetheless, few studies have looked specifically at entry into these relevant human cells. Our results reveal a new route for virus entry that is specific to keratinocytes, involves rapid entry, and functions at low temperatures. This may reflect the environmental conditions encountered by HSV-1 when entering its host through the skin and emphasizes the importance of studying virus-host interactions in physiologically relevant cells.


2014 ◽  
Vol 89 (1) ◽  
pp. 262-274 ◽  
Author(s):  
Philipp Petermann ◽  
Katharina Thier ◽  
Elena Rahn ◽  
Frazer J. Rixon ◽  
Wilhelm Bloch ◽  
...  

ABSTRACTSkin keratinocytes represent a primary entry site for herpes simplex virus 1 (HSV-1)in vivo. The cellular proteins nectin-1 and herpesvirus entry mediator (HVEM) act as efficient receptors for both serotypes of HSV and are sufficient for disease development mediated by HSV-2 in mice. How HSV-1 enters skin and whether both nectin-1 and HVEM are involved are not known. We addressed the impact of nectin-1 during entry of HSV-1 into murine epidermis and investigated the putative contribution of HVEM. Usingex vivoinfection of murine epidermis, we showed that HSV-1 entered the basal keratinocytes of the epidermis very efficiently. In nectin-1-deficient epidermis, entry was strongly reduced. Almost no entry was observed, however, in nectin-1-deficient keratinocytes grown in culture. This observation correlated with the presence of HVEM on the keratinocyte surface in epidermis and with the lack of HVEM expression in nectin-1-deficient primary keratinocytes. Our results suggest that nectin-1 is the primary receptor in epidermis, while HVEM has a more limited role. For primary murine keratinocytes, on which nectin-1 acts as a single receptor, electron microscopy suggested that HSV-1 can enter both by direct fusion with the plasma membrane and via endocytic vesicles. Thus, we concluded that nectin-1 directs internalization into keratinocytes via alternative pathways. In summary, HSV-1 entry into epidermis was shown to strongly depend on the presence of nectin-1, but the restricted presence of HVEM can potentially replace nectin-1 as a receptor, illustrating the flexibility employed by HSV-1 to efficiently invade tissuein vivo.IMPORTANCEHerpes simplex virus (HSV) can cause a range of diseases in humans, from uncomplicated mucocutaneous lesions to life-threatening infections. The skin is one target tissue of HSV, and the question of how the virus overcomes the protective skin barrier and penetrates into the tissue to reach its receptors is still open. Previous studies analyzing entry into cells grownin vitrorevealed nectin-1 and HVEM as HSV receptors. To explore the contributions of nectin-1 and HVEM to entry into a natural target tissue, we established anex vivoinfection model. Using nectin-1- or HVEM-deficient mice, we demonstrated the distinct involvement of nectin-1 and HVEM for HSV-1 entry into epidermis and characterized the internalization pathways. Such advances in understanding the involvement of receptors in tissue are essential preconditions for unraveling HSV invasion of skin, which in turn will allow the development of antiviral reagents.


2018 ◽  
Vol 5 (11) ◽  
Author(s):  
Marie-Laure Chaix ◽  
Isabelle Charreau ◽  
Claire Pintado ◽  
Constance Delaugerre ◽  
Nadia Mahjoub ◽  
...  

Abstract We evaluated the impact of on-demand oral tenofovir disoproxil fumarate (TDF)/emtricitabine (FTC) for pre-exposure prophylaxis (PrEP) on herpes simplex virus (HSV)-1/2 incidence among men who have sex with men (MSM) enrolled in the ANRS IPERGAY trial. Serum samples were tested at baseline and at the last visit for HSV-1/2 antibodies. Overall HSV-1 incidence was 11.7 per 100 person-years; 16.2 and 7.8 per 100 person-years in the TDF/FTC and placebo arm, respectively (P = .19). Overall HSV-2 incidence was 7.6 per 100 person-years; 8.1 and 7.0 per 100 person-years in the TDF/FTC and placebo arm, respectively (P = .75). On-demand oral PrEP with TDF/FTC failed to reduce HSV-1/2 incidence in this population.


2019 ◽  
Vol 93 (16) ◽  
Author(s):  
Maureen Möckel ◽  
Elena Rahn ◽  
Nydia de la Cruz ◽  
Lisa Wirtz ◽  
Jan W. M. van Lent ◽  
...  

ABSTRACT Dynamin GTPases, best known for their role in membrane fission of endocytic vesicles, provide a target for viruses to be exploited during endocytic uptake. Recently, we found that entry of herpes simplex virus 1 (HSV-1) into skin cells depends on dynamin, although our results supported that viral internalization occurs via both direct fusion with the plasma membrane and via endocytic pathways. To further explore the role of dynamin for efficient HSV-1 entry, we utilized conditional dynamin 1 and dynamin 2 double-knockout (DKO) fibroblasts as an experimental tool. Strikingly, HSV-1 entered control and DKO fibroblasts with comparable efficiencies. For comparison, we infected DKO cells with Semliki Forest virus, which is known to adopt clathrin-mediated endocytosis as its internalization pathway, and observed efficient virus entry. These results support the notion that the DKO cells provide alternative pathways for viral uptake. Treatment of cells with the dynamin inhibitor dynasore confirmed that HSV-1 entry depended on dynamin in the control fibroblasts. As expected, dynasore did not interfere with viral entry into DKO cells. Electron microscopy of HSV-1-infected cells suggests viral entry after fusion with the plasma membrane and by endocytosis in both dynamin-expressing and dynamin-deficient cells. Infection at low temperatures where endocytosis is blocked still resulted in HSV-1 entry, although at a reduced level, which suggests that nonendocytic pathways contribute to successful entry. Overall, our results strengthen the impact of dynamin for HSV-1 entry, as only cells that adapt to the lack of dynamin allow dynamin-independent entry. IMPORTANCE The human pathogen herpes simplex virus 1 (HSV-1) can adapt to a variety of cellular pathways to enter cells. In general, HSV-1 is internalized by fusion of its envelope with the plasma membrane or by endocytic pathways, which reflects the high adaptation to differences in its target cells. The challenges are to distinguish whether multiple or only one of these internalization pathways leads to successful entry and, furthermore, to identify the mode of viral uptake. In this study, we focused on dynamin, which promotes endocytic vesicle fission, and explored how the presence and absence of dynamin can influence viral entry. Our results support the idea that HSV-1 entry into mouse embryonic fibroblasts depends on dynamin; however, depletion of dynamin still allows efficient viral entry, suggesting that alternative pathways present upon dynamin depletion can accomplish viral internalization.


Author(s):  
Z. Hong Zhou ◽  
Jing He ◽  
Joanita Jakana ◽  
J. D. Tatman ◽  
Frazer J. Rixon ◽  
...  

Herpes simplex virus-1 (HSV-1) is a ubiquitous virus which is implicated in diseases ranging from self-curing cold sores to life-threatening infections. The 2500 Å diameter herpes virion is composed of a glycoprotein spike containing, lipid envelope, enclosing a protein layer (the tegument) in which is embedded the capsid (which contains the dsDNA genome). The B-, and A- and C-capsids, representing different morphogenetic stages in HSV-1 infected cells, are composed of 7, and 5 structural proteins respectively. The three capsid types are organized in similar T=16 icosahedral shells with 12 pentons, 150 hexons, and 320 connecting triplexes. Our previous 3D structure study at 26 Å revealed domain features of all these structural components and suggested probable locations for the outer shell proteins, VP5, VP26, VP19c and VP23. VP5 makes up most of both pentons and hexons. VP26 appeared to bind to the VP5 subunit in hexon but not to that in penton.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
David Shahnazaryan ◽  
Rana Khalil ◽  
Claire Wynne ◽  
Caroline A. Jefferies ◽  
Joan Ní Gabhann-Dromgoole ◽  
...  

AbstractHerpes simplex keratitis (HSK), caused by herpes simplex virus type 1 (HSV-1) infection, is the commonest cause of infectious blindness in the developed world. Following infection the virus is initially suspended in the tear film, where it encounters a multi-pronged immune response comprising enzymes, complement, immunoglobulins and crucially, a range of anti-viral and pro-inflammatory cytokines. However, given that HSV-1 can overcome innate immune responses to establish lifelong latency throughout a susceptible individual’s lifetime, there is significant interest in understanding the mechanisms employed by HSV-1 to downregulate the anti-viral type I interferon (IFN) mediated immune responses. This study aimed to investigate the interactions between infected cell protein (ICP)0 and key elements of the IFN pathway to identify possible novel targets that contribute to viral immune evasion. Reporter gene assays demonstrated the ability of ICP0 to inhibit type I IFN activity downstream of pathogen recognition receptors (PRRs) which are known to be involved in host antiviral defences. Further experiments identified interferon regulatory factor (IRF)7, a driver of type I IFN, as a potential target for ICP0. These findings increase our understanding of the pathogenesis of HSK and suggest IRF7 as a potential therapeutic target.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 196
Author(s):  
Sara Artusi ◽  
Emanuela Ruggiero ◽  
Matteo Nadai ◽  
Beatrice Tosoni ◽  
Rosalba Perrone ◽  
...  

The herpes simplex virus 1 (HSV-1) genome is extremely rich in guanine tracts that fold into G-quadruplexes (G4s), nucleic acid secondary structures implicated in key biological functions. Viral G4s were visualized in HSV-1 infected cells, with massive virus cycle-dependent G4-formation peaking during viral DNA replication. Small molecules that specifically interact with G4s have been shown to inhibit HSV-1 DNA replication. We here investigated the antiviral activity of TMPyP4, a porphyrin known to interact with G4s. The analogue TMPyP2, with lower G4 affinity, was used as control. We showed by biophysical analysis that TMPyP4 interacts with HSV-1 G4s, and inhibits polymerase progression in vitro; in infected cells, it displayed good antiviral activity which, however, was independent of inhibition of virus DNA replication or entry. At low TMPyP4 concentration, the virus released by the cells was almost null, while inside the cell virus amounts were at control levels. TEM analysis showed that virus particles were trapped inside cytoplasmatic vesicles, which could not be ascribed to autophagy, as proven by RT-qPCR, western blot, and immunofluorescence analysis. Our data indicate a unique mechanism of action of TMPyP4 against HSV-1, and suggest the unprecedented involvement of currently unknown G4s in viral or antiviral cellular defense pathways.


2017 ◽  
Vol 91 (12) ◽  
Author(s):  
Fumio Maeda ◽  
Jun Arii ◽  
Yoshitaka Hirohata ◽  
Yuhei Maruzuru ◽  
Naoto Koyanagi ◽  
...  

ABSTRACT Upon herpes simplex virus 1 (HSV-1) infection, the CD98 heavy chain (CD98hc) is redistributed around the nuclear membrane (NM), where it promotes viral de-envelopment during the nuclear egress of nucleocapsids. In this study, we attempted to identify the factor(s) involved in CD98hc accumulation and demonstrated the following: (i) the null mutation of HSV-1 UL34 caused specific dispersion throughout the cytoplasm of CD98hc and the HSV-1 de-envelopment regulators, glycoproteins B and H (gB and gH); (ii) as observed with CD98hc, gB, and gH, wild-type HSV-1 infection caused redistribution of the endoplasmic reticulum (ER) markers calnexin and ERp57 around the NM, whereas the UL34-null mutation caused cytoplasmic dispersion of these markers; (iii) the ER markers colocalized efficiently with CD98hc, gB, and gH in the presence and absence of UL34 in HSV-1-infected cells; (iv) at the ultrastructural level, wild-type HSV-1 infection caused ER compression around the NM, whereas the UL34-null mutation caused cytoplasmic dispersion of the ER; and (v) the UL34-null mutation significantly decreased the colocalization efficiency of lamin protein markers of the NM with CD98hc and gB. Collectively, these results indicate that HSV-1 infection causes redistribution of the ER around the NM, with resulting accumulation of ER-associated CD98hc, gB, and gH around the NM and that UL34 is required for ER redistribution, as well as for efficient recruitment to the NM of the ER-associated de-envelopment factors. Our study suggests that HSV-1 induces remodeling of the global ER architecture for recruitment of regulators mediating viral nuclear egress to the NM. IMPORTANCE The ER is an important cellular organelle that exists as a complex network extending throughout the cytoplasm. Although viruses often remodel the ER to facilitate viral replication, information on the effects of herpesvirus infections on ER morphological integrity is limited. Here, we showed that HSV-1 infection led to compression of the global ER architecture around the NM, resulting in accumulation of ER-associated regulators associated with nuclear egress of HSV-1 nucleocapsids. We also identified HSV-1 UL34 as a viral factor that mediated ER remodeling. Furthermore, we demonstrated that UL34 was required for efficient targeting of these regulators to the NM. To our knowledge, this is the first report showing that a herpesvirus remodels ER global architecture. Our study also provides insight into the mechanism by which the regulators for HSV-1 nuclear egress are recruited to the NM, where this viral event occurs.


2012 ◽  
Vol 86 (16) ◽  
pp. 8592-8601 ◽  
Author(s):  
Charlotte Mahiet ◽  
Ayla Ergani ◽  
Nicolas Huot ◽  
Nicolas Alende ◽  
Ahmed Azough ◽  
...  

Herpes simplex virus 1 (HSV-1) is a human pathogen that leads to recurrent facial-oral lesions. Its 152-kb genome is organized in two covalently linked segments, each composed of a unique sequence flanked by inverted repeats. Replication of the HSV-1 genome produces concatemeric molecules in which homologous recombination events occur between the inverted repeats. This mechanism leads to four genome isomers (termed P, IS, IL, and ILS) that differ in the relative orientations of their unique fragments. Molecular combing analysis was performed on DNA extracted from viral particles and BSR, Vero, COS-7, and Neuro-2a cells infected with either strain SC16 or KOS of HSV-1, as well as from tissues of experimentally infected mice. Using fluorescence hybridization, isomers were repeatedly detected and distinguished and were accompanied by a large proportion of noncanonical forms (40%). In both cell and viral-particle extracts, the distributions of the four isomers were statistically equivalent, except for strain KOS grown in Vero and Neuro-2a cells, in which P and IS isomers were significantly overrepresented. In infected cell extracts, concatemeric molecules as long as 10 genome equivalents were detected, among which, strikingly, the isomer distributions were equivalent, suggesting that any such imbalance may occur during encapsidation.In vivo, for strain KOS-infected trigeminal ganglia, an unbalanced distribution distinct from the onein vitrowas observed, along with a considerable proportion of noncanonical assortment.


2015 ◽  
Vol 89 (14) ◽  
pp. 7159-7169 ◽  
Author(s):  
Qing Fan ◽  
Richard Longnecker ◽  
Sarah A. Connolly

ABSTRACTWhereas most viruses require only a single protein to bind to and fuse with cells, herpesviruses use multiple glycoproteins to mediate virus entry, and thus communication among these proteins is required. For most alphaherpesviruses, the minimal set of viral proteins required for fusion with the host cell includes glycoproteins gD, gB, and a gH/gL heterodimer. In the current model of entry, gD binds to a cellular receptor and transmits a signal to gH/gL. This signal then triggers gB, the conserved fusion protein, to insert into the target membrane and refold to merge the viral and cellular membranes. We previously demonstrated that gB homologs from two alphaherpesviruses, herpes simplex virus 1 (HSV-1) and saimiriine herpesvirus 1 (SaHV-1), were interchangeable. In contrast, neither gD nor gH/gL functioned with heterotypic entry glycoproteins, indicating that gD and gH/gL exhibit an essential type-specific functional interaction. To map this homotypic interaction site on gH/gL, we generated HSV-1/SaHV-1 gH and gL chimeras. The functional interaction with HSV-1 gD mapped to the N-terminal domains I and II of the HSV-1 gH ectodomain. The core of HSV-1 gL that interacts with gH also was required for functional homotypic interaction. The N-terminal gH/gL domains I and II are the least conserved and may have evolved to support species-specific glycoprotein interactions.IMPORTANCEThe first step of the herpesvirus life cycle is entry into a host cell. A coordinated interaction among multiple viral glycoproteins is required to mediate fusion of the viral envelope with the cell membrane. The details of how these glycoproteins interact to trigger fusion are unclear. By swapping the entry glycoproteins of two alphaherpesviruses (HSV-1 and SaHV-1), we previously demonstrated a functional homotypic interaction between gD and gH/gL. To define the gH and gL requirements for homotypic interaction, we evaluated the function of a panel of HSV-1/SaHV-1 gH and gL chimeras. We demonstrate that domains I and II of HSV-1 gH are sufficient to promote a functional, albeit reduced, interaction with HSV-1 gD. These findings contribute to our model of how the entry glycoproteins cooperate to mediate herpesvirus entry into the cell.


Sign in / Sign up

Export Citation Format

Share Document