scholarly journals Organ-Specific Attenuation of Murine Hepatitis Virus Strain A59 by Replacement of Catalytic Residues in the Putative Viral Cyclic Phosphodiesterase ns2

2009 ◽  
Vol 83 (8) ◽  
pp. 3743-3753 ◽  
Author(s):  
Jessica K. Roth-Cross ◽  
Helen Stokes ◽  
Guohui Chang ◽  
Ming Ming Chua ◽  
Volker Thiel ◽  
...  

ABSTRACT The Murine hepatitis virus (MHV) strain A59 ns2 protein is a 30-kDa nonstructural protein that is expressed from a subgenomic mRNA in the cytoplasm of virus-infected cells. Its homologs are also encoded in other closely related group 2a coronaviruses and more distantly related toroviruses. Together, these proteins comprise a subset of a large superfamily of 2H phosphoesterase proteins that are distinguished by a pair of conserved His-x-Thr/Ser motifs encompassing catalytically important residues. We have used a vaccinia virus-based reverse genetic system to produce recombinant viruses encoding ns2 proteins with single-amino-acid substitutions in, or adjacent to, these conserved motifs, namely, inf-ns2 H46A, inf-ns2 S48A, inf-ns2-S120A, and inf-ns2-H126R. All of the mutant viruses replicate in mouse 17 clone 1 fibroblast cells and mouse embryonic cells to the same extent as the parental wild-type recombinant virus, inf-MHV-A59. However, compared to inf-MHV-A59, the inf-ns2 H46A and inf-ns2-H126R mutants are highly attenuated for replication in mouse liver following intrahepatic inoculation. Interestingly, none of the mutant viruses were attenuated for replication in mouse brain following intracranial inoculation. These results show that the ns2 protein of MHV-A59 has an important role in virus pathogenicity and that a substitution of the histidine residues of the MHV-A59 ns2 His-x-Thr/Ser motifs is critical for virus virulence in the liver but not in the brain. This novel phenotype suggests a strategy to investigate the function of the MHV-A59 ns2 protein involving the search for organ-specific proteins or RNAs that react differentially to wild-type and mutant ns2 proteins.

2014 ◽  
Vol 81 (4) ◽  
pp. 1210-1224 ◽  
Author(s):  
Daniela Toro-Ascuy ◽  
Carolina Tambley ◽  
Carolina Beltran ◽  
Carolina Mascayano ◽  
Nicolas Sandoval ◽  
...  

ABSTRACTInfectious salmon anemia (ISA) is a serious disease of marine-farmed Atlantic salmon (Salmo salar) caused by ISA virus (ISAV), belonging to the genusIsavirus, familyOrthomyxoviridae. There is an urgent need to understand the virulence factors and pathogenic mechanisms of ISAV and to develop new vaccine approaches. Using a recombinant molecular biology approach, we report the development of a plasmid-based reverse genetic system for ISAV, which includes the use of a novel fish promoter, the Atlantic salmon internal transcribed spacer region 1 (ITS-1). Salmon cells cotransfected with pSS-URG-based vectors expressing the eight viral RNA segments and four cytomegalovirus (CMV)-based vectors that express the four proteins of the ISAV ribonucleoprotein complex allowed the generation of infectious recombinant ISAV (rISAV). We generated three recombinant viruses, wild-type rISAV901_09and rISAVrS6-NotI-HPRcontaining a NotI restriction site and rISAVS6/EGFP-HPRharboring the open reading frame of enhanced green fluorescent protein (EGFP), both within the highly polymorphic region (HPR) of segment 6. All rescued viruses showed replication activity and cytopathic effect in Atlantic salmon kidney-infected cells. The fluorescent recombinant viruses also showed a characteristic cytopathic effect in salmon cells, and the viruses replicated to a titer of 6.5 × 105PFU/ml, similar to that of the wild-type virus. This novel reverse genetics system offers a powerful tool to study the molecular biology of ISAV and to develop a new generation of ISAV vaccines to prevent and mitigate ISAV infection, which has had a profound effect on the salmon industry.


2013 ◽  
Vol 87 (23) ◽  
pp. 12611-12618 ◽  
Author(s):  
Christopher C. Stobart ◽  
Nicole R. Sexton ◽  
Havisha Munjal ◽  
Xiaotao Lu ◽  
Katrina L. Molland ◽  
...  

Human coronaviruses (CoVs) such as severe acute respiratory syndrome CoV (SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV) cause epidemics of severe human respiratory disease. A conserved step of CoV replication is the translation and processing of replicase polyproteins containing 16 nonstructural protein domains (nsp's 1 to 16). The CoV nsp5 protease (3CLpro; Mpro) processes nsp's at 11 cleavage sites and is essential for virus replication. CoV nsp5 has a conserved 3-domain structure and catalytic residues. However, the intra- and intermolecular determinants of nsp5 activity and their conservation across divergent CoVs are unknown, in part due to challenges in cultivating many human and zoonotic CoVs. To test for conservation of nsp5 structure-function determinants, we engineered chimeric betacoronavirus murine hepatitis virus (MHV) genomes encoding nsp5 proteases of human and bat alphacoronaviruses and betacoronaviruses. Exchange of nsp5 proteases from HCoV-HKU1 and HCoV-OC43, which share the same genogroup, genogroup 2a, with MHV, allowed for immediate viral recovery with efficient replication albeit with impaired fitness in direct competition with wild-type MHV. Introduction of MHV nsp5 temperature-sensitive mutations into chimeric HKU1 and OC43 nsp5 proteases resulted in clear differences in viability and temperature-sensitive phenotypes compared with MHV nsp5. These data indicate tight genetic linkage and coevolution between nsp5 protease and the genomic background and identify differences in intramolecular networks regulating nsp5 function. Our results also provide evidence that chimeric viruses within coronavirus genogroups can be used to test nsp5 determinants of function and inhibition in common isogenic backgrounds and cell types.


2007 ◽  
Vol 81 (22) ◽  
pp. 12135-12144 ◽  
Author(s):  
Lance D. Eckerle ◽  
Xiaotao Lu ◽  
Steven M. Sperry ◽  
Leena Choi ◽  
Mark R. Denison

ABSTRACT Replication fidelity of RNA virus genomes is constrained by the opposing necessities of generating sufficient diversity for adaptation and maintaining genetic stability, but it is unclear how the largest viral RNA genomes have evolved and are maintained under these constraints. A coronavirus (CoV) nonstructural protein, nsp14, contains conserved active-site motifs of cellular exonucleases, including DNA proofreading enzymes, and the severe acute respiratory syndrome CoV (SARS-CoV) nsp14 has 3′-to-5′ exoribonuclease (ExoN) activity in vitro. Here, we show that nsp14 ExoN remarkably increases replication fidelity of the CoV murine hepatitis virus (MHV). Replacement of conserved MHV ExoN active-site residues with alanines resulted in viable mutant viruses with growth and RNA synthesis defects that during passage accumulated 15-fold more mutations than wild-type virus without changes in growth fitness. The estimated mutation rate for ExoN mutants was similar to that reported for other RNA viruses, whereas that of wild-type MHV was less than the established rates for RNA viruses in general, suggesting that CoVs with intact ExoN replicate with unusually high fidelity. Our results indicate that nsp14 ExoN plays a critical role in prevention or repair of nucleotide incorporation errors during genome replication. The established mutants are unique tools to test the hypothesis that high replication fidelity is required for the evolution and stability of large RNA genomes.


2003 ◽  
Vol 77 (2) ◽  
pp. 841-850 ◽  
Author(s):  
Jean C. Tsai ◽  
Bruce D. Zelus ◽  
Kathryn V. Holmes ◽  
Susan R. Weiss

ABSTRACT Using isogenic recombinant murine coronaviruses expressing wild-type murine hepatitis virus strain 4 (MHV-4) or MHV-A59 spike glycoproteins or chimeric MHV-4/MHV-A59 spike glycoproteins, we have demonstrated the biological functionality of the N-terminus of the spike, encompassing the receptor binding domain (RBD). We have used two assays, one an in vitro liposome binding assay and the other a tissue culture replication assay. The liposome binding assay shows that interaction of the receptor with spikes on virions at 37°C causes a conformational change that makes the virions hydrophobic so that they bind to liposomes (B. D. Zelus, J. H. Schickli, D. M. Blau, S. R. Weiss, and K. V. Holmes, J. Virol. 77: 830-840, 2003). Recombinant viruses with spikes containing the RBD of either MHV-A59 or MHV-4 readily associated with liposomes at 37°C in the presence of soluble mCEACAM1a, except for S4R, which expresses the entire wild-type MHV-4 spike and associated only inefficiently with liposomes following incubation with soluble mCEACAM1a. In contrast, soluble mCEACAM1b allowed viruses with the MHV-A59 RBD to associate with liposomes more efficiently than did viruses with the MHV-4 RBD. In the second assay, which requires virus entry and replication, all recombinant viruses replicated efficiently in BHK cells expressing mCEACAM1a. In BHK cells expressing mCEACAM1b, only viruses expressing chimeric spikes with the MHV-A59 RBD could replicate, while replication of viruses expressing chimeric spikes with the MHV-4 RBD was undetectable. Despite having the MHV-4 RBD, S4R replicated in BHK cells expressing mCEACAM1b; this is most probably due to spread via CEACAM1 receptor-independent cell-to-cell fusion, an activity displayed only by S4R among the recombinant viruses studied here. These data suggest that the RBD domain and the rest of the spike must coevolve to optimize function in viral entry and spread.


2005 ◽  
Vol 79 (6) ◽  
pp. 3391-3400 ◽  
Author(s):  
Steven M. Sperry ◽  
Lubna Kazi ◽  
Rachel L. Graham ◽  
Ralph S. Baric ◽  
Susan R. Weiss ◽  
...  

ABSTRACT A reverse genetic system was recently established for the coronavirus mouse hepatitis virus strain A59 (MHV-A59), in which cDNA fragments of the RNA genome are assembled in vitro into a full-length genome cDNA, followed by electroporation of in vitro-transcribed genome RNA into cells with recovery of viable virus. The “in vitro-assembled” wild-type MHV-A59 virus (icMHV-A59) demonstrated replication identical to laboratory strains of MHV-A59 in tissue culture; however, icMHV-A59 was avirulent following intracranial inoculation of C57BL/6 mice. Sequencing of the cloned genome cDNA fragments identified two single-nucleotide mutations in cloned genome fragment F, encoding a Tyr6398His substitution in open reading frame (ORF) 1b p59-nsp14 and a Leu94Pro substitution in the ORF 2a 30-kDa protein. The mutations were repaired individually and together in recombinant viruses, all of which demonstrated wild-type replication in tissue culture. Following intracranial inoculation of mice, the viruses encoding Tyr6398His/Leu94Pro substitutions and the Tyr6398His substitution alone demonstrated log10 50% lethal dose (LD50) values too great to be measured. The Leu94Pro mutant virus had reduced but measurable log10 LD50, and the “corrected” Tyr6398/Leu94 virus had a log10 LD50 identical to wild-type MHV-A59. The experiments have defined residues in ORF 1b and ORF 2a that attenuate virus replication and virulence in mice but do not affect in vitro replication. The results suggest that these proteins serve roles in pathogenesis or virus survival in vivo distinct from functions in virus replication. The study also demonstrates the usefulness of the reverse genetic system to confirm the role of residues or proteins in coronavirus replication and pathogenesis.


2006 ◽  
Vol 80 (5) ◽  
pp. 2396-2404 ◽  
Author(s):  
Wen Jun Liu ◽  
Xiang Ju Wang ◽  
David C. Clark ◽  
Mario Lobigs ◽  
Roy A. Hall ◽  
...  

ABSTRACT Alpha/beta interferons (IFN-α/β) are key mediators of the innate immune response against viral infection. The ability of viruses to circumvent IFN-α/β responses plays a crucial role in determining the outcome of infection. In a previous study using subgenomic replicons of the Kunjin subtype of West Nile virus (WNVKUN), we demonstrated that the nonstructural protein NS2A is a major inhibitor of IFN-β promoter-driven transcription and that a single amino acid substitution in NS2A (Ala30 to Pro [A30P]) dramatically reduced its inhibitory effect (W. J. Liu, H. B. Chen, X. J. Wang, H. Huang, and A. A. Khromykh, J. Virol. 78:12225-12235). Here we show that incorporation of the A30P mutation into the WNVKUN genome results in a mutant virus which elicits more rapid induction and higher levels of synthesis of IFN-α/β in infected human A549 cells than that detected following wild-type WNVKUN infection. Consequently, replication of the WNVKUNNS2A/A30P mutant virus in these cells known to be high producers of IFN-α/β was abortive. In contrast, both the mutant and the wild-type WNVKUN produced similar-size plaques and replicated with similar efficiency in BHK cells which are known to be deficient in IFN-α/β production. The mutant virus was highly attenuated in neuroinvasiveness and also attenuated in neurovirulence in 3-week-old mice. Surprisingly, the mutant virus was also partially attenuated in IFN-α/βγ receptor knockout mice, suggesting that the A30P mutation may also play a role in more efficient activation of other antiviral pathways in addition to the IFN response. Immunization of wild-type mice with the mutant virus resulted in induction of an antibody response of similar magnitude to that observed in mice immunized with wild-type WNVKUN and gave complete protection against challenge with a lethal dose of the highly virulent New York 99 strain of WNV. The results confirm and extend our previous original findings on the role of the flavivirus NS2A protein in inhibition of a host antiviral response and demonstrate that the targeted disabling of a viral mechanism for evading the IFN response can be applied to the development of live attenuated flavivirus vaccine candidates.


2015 ◽  
Vol 89 (9) ◽  
pp. 4907-4917 ◽  
Author(s):  
Anna M. Mielech ◽  
Xufang Deng ◽  
Yafang Chen ◽  
Eveline Kindler ◽  
Dorthea L. Wheeler ◽  
...  

ABSTRACTUbiquitin-like domains (Ubls) now are recognized as common elements adjacent to viral and cellular proteases; however, their function is unclear. Structural studies of the papain-like protease (PLP) domains of coronaviruses (CoVs) revealed an adjacent Ubl domain in severe acute respiratory syndrome CoV, Middle East respiratory syndrome CoV, and the murine CoV, mouse hepatitis virus (MHV). Here, we tested the effect of altering the Ubl adjacent to PLP2 of MHV on enzyme activity, viral replication, and pathogenesis. Using deletion and substitution approaches, we identified sites within the Ubl domain, residues 785 to 787 of nonstructural protein 3, which negatively affect protease activity, and valine residues 785 and 787, which negatively affect deubiquitinating activity. Using reverse genetics, we engineered Ubl mutant viruses and found that AM2 (V787S) and AM3 (V785S) viruses replicate efficiently at 37°C but generate smaller plaques than wild-type (WT) virus, and AM2 is defective for replication at higher temperatures. To evaluate the effect of the mutation on protease activity, we purified WT and Ubl mutant PLP2 and found that the proteases exhibit similar specific activities at 25°C. However, the thermal stability of the Ubl mutant PLP2 was significantly reduced at 30°C, thereby reducing the total enzymatic activity. To determine if the destabilizing mutation affects viral pathogenesis, we infected C57BL/6 mice with WT or AM2 virus and found that the mutant virus is highly attenuated, yet it replicates sufficiently to elicit protective immunity. These studies revealed that modulating the Ubl domain adjacent to the PLP reduces protease stability and viral pathogenesis, revealing a novel approach to coronavirus attenuation.IMPORTANCEIntroducing mutations into a protein or virus can have either direct or indirect effects on function. We asked if changes in the Ubl domain, a conserved domain adjacent to the coronavirus papain-like protease, altered the viral protease activity or affected viral replication or pathogenesis. Our studies using purified wild-type and Ubl mutant proteases revealed that mutations in the viral Ubl domain destabilize and inactivate the adjacent viral protease. Furthermore, we show that a CoV encoding the mutant Ubl domain is unable to replicate at high temperature or cause lethal disease in mice. Our results identify the coronavirus Ubl domain as a novel modulator of viral protease stability and reveal manipulating the Ubl domain as a new approach for attenuating coronavirus replication and pathogenesis.


2005 ◽  
Vol 79 (24) ◽  
pp. 15064-15073 ◽  
Author(s):  
Lubna Kazi ◽  
Arjen Lissenberg ◽  
Richard Watson ◽  
Raoul J. de Groot ◽  
Susan R. Weiss

ABSTRACT Murine hepatitis virus (MHV) infection provides a model system for the study of hepatitis, acute encephalitis, and chronic demyelinating disease. The spike glycoprotein, S, which mediates receptor binding and membrane fusion, plays a critical role in MHV pathogenesis. However, viral proteins other than S also contribute to pathogenicity. The JHM strain of MHV is highly neurovirulent and expresses a second spike glycoprotein, the hemagglutinin esterase (HE), which is not produced by MHV-A59, a hepatotropic but only mildly neurovirulent strain. To investigate a possible role for HE in MHV-induced neurovirulence, isogenic recombinant MHV-A59 viruses were generated that produced either (i) the wild-type protein, (ii) an enzymatically inactive HE protein, or (iii) no HE at all (A. Lissenberg, M. M. Vrolijk, A. L. W. van Vliet, M. A. Langereis, J. D. F. de Groot-Mijnes, P. J. M. Rottier, and R. J. de Groot, J. Virol. 79:15054-15063, 2005 [accompanying paper]). A second, mirror set of recombinant viruses was constructed in which, in addition, the MHV-A59 S gene had been replaced with that from MHV-JHM. The expression of HE in combination with A59 S did not affect the tropism, pathogenicity, or spread of the virus in vivo. However, in combination with JHM S, the expression of HE, regardless of whether it retained esterase activity or not, resulted in increased viral spread within the central nervous system and in increased neurovirulence. Our findings suggest that the properties of S receptor utilization and/or fusogenicity mainly determine organ and host cell tropism but that HE enhances the efficiency of infection and promotes viral dissemination, at least in some tissues, presumably by serving as a second receptor-binding protein.


2000 ◽  
Vol 74 (9) ◽  
pp. 4207-4213 ◽  
Author(s):  
Mark T. Heise ◽  
Dennis A. Simpson ◽  
Robert E. Johnston

ABSTRACT S.A.AR86, a member of the Sindbis group of alphaviruses, is neurovirulent in adult mice and has a unique threonine at position 538 of nsP1; nonneurovirulent members of this group of alphaviruses encode isoleucine. Isoleucine was introduced at position 538 in the wild-type S.A.AR86 infectious clone, ps55, and virus derived from this mutant clone, ps51, was significantly attenuated for neurovirulence compared to that derived from ps55. Intracranial (i.c.) s55 infection resulted in severe disease, including hind limb paresis, conjunctivitis, weight loss, and death in 89% of animals. In contrast, s51 caused fewer clinical signs and no mortality. Nevertheless, comparison of the virus derived from the mutant (ps51) and wild-type (ps55) S.A.AR86 molecular clones demonstrated that s51 grew as well as or better than the wild-type s55 virus in tissue culture and that viral titers in the brain following i.c. infection with s51 were equivalent to those of wild-type s55 virus. Analysis of viral replication within the brain by in situ hybridization revealed that both viruses established infection in similar regions of the brain at early times postinfection (12 to 72 h). However, at late times postinfection, the wild-type s55 virus had spread throughout large areas of the brain, while the s51 mutant exhibited a restricted pattern of replication. This suggests that s51 is either defective in spreading throughout the brain at late times postinfection or is cleared more rapidly than s55. Further evidence for the contribution of nsP1 Thr 538 to S.A.AR86 neurovirulence was provided by experiments in which a threonine residue was introduced at nsP1 position 538 of Sindbis virus strain TR339, which is nonneurovirulent in weanling mice. The resulting virus, 39ns1, demonstrated significantly increased neurovirulence and morbidity, including weight loss and hind limb paresis. These results demonstrate a role for alphavirus nonstructural protein genes in adult mouse neurovirulence.


2009 ◽  
Vol 84 (1) ◽  
pp. 280-290 ◽  
Author(s):  
Mark J. Gadlage ◽  
Jennifer S. Sparks ◽  
Dia C. Beachboard ◽  
Reagan G. Cox ◽  
Joshua D. Doyle ◽  
...  

ABSTRACT Positive-strand RNA viruses induce modifications of cytoplasmic membranes to form replication complexes. For coronaviruses, replicase nonstructural protein 4 (nsp4) has been proposed to function in the formation and organization of replication complexes. Murine hepatitis virus (MHV) nsp4 is glycosylated at residues Asn176 (N176) and N237 during plasmid expression of nsp4 in cells. To test if MHV nsp4 residues N176 and N237 are glycosylated during virus replication and to determine the effects of N176 and N237 on nsp4 function and MHV replication, alanine substitutions of nsp4 N176, N237, or both were engineered into the MHV-A59 genome. The N176A, N237A, and N176A/N237A mutant viruses were viable, and N176 and N237 were glycosylated during infection of wild-type (wt) and mutant viruses. The nsp4 glycosylation mutants exhibited impaired virus growth and RNA synthesis, with the N237A and N176A/N237A mutant viruses demonstrating more profound defects in virus growth and RNA synthesis. Electron microscopic analysis of ultrastructure from infected cells demonstrated that the nsp4 mutants had aberrant morphology of virus-induced double-membrane vesicles (DMVs) compared to those infected with wt virus. The degree of altered DMV morphology directly correlated with the extent of impairment in viral RNA synthesis and virus growth of the nsp4 mutant viruses. The results indicate that nsp4 plays a critical role in the organization and stability of DMVs. The results also support the conclusion that the structure of DMVs is essential for efficient RNA synthesis and optimal replication of coronaviruses.


Sign in / Sign up

Export Citation Format

Share Document